36 research outputs found

    Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum

    Get PDF
    Antigenic variation is a subtle process of fundamental importance to the survival of a microbial pathogen. In Plasmodium falciparum malaria, PfEMP1 is the major variable antigen and adhesin expressed at the surface of the infected erythrocyte, which is encoded for by members of a family of 60 var-genes. Peri-nuclear repositioning and epigenetic mechanisms control their mono-allelic expression. The switching of PfEMP1 depends in part on variable transition rates and short-lived immune responses to shared minor epitopes. Here we show var-genes to switch to a common gene that is highly transcribed, but sparsely translated into PfEMP1 and not expressed at the erythrocyte surface. Highly clonal and adhesive P. falciparum, which expressed distinct var-genes and the corresponding PfEMP1s at onset, were propagated without enrichment or panning. The parasites successively and spontaneously switched to transcribe a shared var-gene (var2csa) matched by the loss of PfEMP1 surface expression and host cell-binding. The var2csa gene repositioned in the peri-nuclear area upon activation, away from the telomeric clusters and heterochromatin to transcribe spliced, full-length RNA. Despite abundant transcripts, the level of intracellular PfEMP1 was low suggesting post-transcriptional mechanisms to partake in protein expression. In vivo, off-switching and translational repression may constitute one pathway, among others, coordinating PfEMP1 expression

    Adaptive copy number evolution in malaria parasites.

    Get PDF
    Copy number polymorphism (CNP) is ubiquitous in eukaryotic genomes, but the degree to which this reflects the action of positive selection is poorly understood. The first gene in the Plasmodium folate biosynthesis pathway, GTP-cyclohydrolase I (gch1), shows extensive CNP. We provide compelling evidence that gch1 CNP is an adaptive consequence of selection by antifolate drugs, which target enzymes downstream in this pathway. (1) We compared gch1 CNP in parasites from Thailand (strong historical antifolate selection) with those from neighboring Laos (weak antifolate selection). Two percent of chromosomes had amplified copy number in Laos, while 72 percent carried multiple (2-11) copies in Thailand, and differentiation exceeded that observed at 73 synonymous SNPs. (2) We found five amplicon types containing one to greater than six genes and spanning 1 to andgt;11 kb, consistent with parallel evolution and strong selection for this gene amplification. gch1 was the only gene occurring in all amplicons suggesting that this locus is the target of selection. (3) We observed reduced microsatellite variation and increased linkage disequilibrium (LD) in a 900-kb region flanking gch1 in parasites from Thailand, consistent with rapid recent spread of chromosomes carrying multiple copies of gch1. (4) We found that parasites bearing dhfr-164L, which causes high-level resistance to antifolate drugs, carry significantly (p = 0.00003) higher copy numbers of gch1 than parasites bearing 164I, indicating functional association between genes located on different chromosomes but linked in the same biochemical pathway. These results demonstrate that CNP at gch1 is adaptive and the associations with dhfr-164L strongly suggest a compensatory function. More generally, these data demonstrate how selection affects multiple enzymes in a single biochemical pathway, and suggest that investigation of structural variation may provide a fast-track to locating genes underlying adaptation

    The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, <it>Plasmodium falciparum</it>, to identify and analyze the inheritance of 170 genome-wide CNVs.</p> <p>Results</p> <p>We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton <it>de novo </it>CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation.</p> <p>Conclusions</p> <p>CNVs are a significant source of segregating and <it>de novo </it>genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.</p

    Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates.

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment

    Epigenetics and chromatin structure regulate var2csa expression and the placental binding phenotype in Plasmodium falciparum

    No full text
    ABSTRACT Plasmodium falciparum is responsible for what appears to be a never-ending public health issue in the developing world. With repeated infections, a gradual semi-immunity to severe malaria can be acquired but this is disrupted when women become pregnant as the parasite cytoadheres in the placenta to prevent splenic clearance. This change in tissue tropism is due to specific expression of the antigenically variable adhesin VAR2CSA. To better understand the molecular mechanisms activating var2csa and antigenic variation over all, we used a combination of phenotypic and systems biology assays. We first established phenotypically homogenous populations of VAR2CSA expressing and placenta binding parasites that were shown to exclusively transcribe var2csa while all other var genes remained silenced. We also confirmed that the transcriptional activation was strongly associated with distinct depletion of repressive H3K9me3 marks. Further, we used chromatin conformation capture as a high-resolution approach to determine interchromosomal interactions and established that transcriptional activation is linked to a small yet significant repositioning of var2csa relative to heterochromatic telomeric clusters. Lastly, we demonstrated that occupancy of 5-methylcytosine was present in all var genes but independent of transcriptional activation and switching. All together, these findings provide insights at high resolution into the potential role of 5-methylcytosine in P. falciparum and increase our understanding of the mechanisms regulating antigenic variation at the epigenetics and chromatin structure level

    Genome wide gene amplifications and deletions in <i>Plasmodium falciparum</i>

    No full text
    The extent to which duplications and deletions occur in the Plasmodium falciparum genome, outside of the subtelomeres, and their contribution to the virulence of the malaria parasite is not known. Here we show the presence of multiple genome wide copy number polymorphisms (CNPs) covering 82 genes, the most extensive spanning a cumulative size of 110 kilobases. CNPs were identified in both laboratory strains and fresh clinical isolates using a 70-mer oligonucleotide microarray in conjunction with fluorescent in situ hybridizations and real-time quantitative PCR. The CNPs were found on all chromosomes except on chromosomes 6 and 8 and involved a total of 50 genes with increased copy numbers and 32 genes with decreased copy numbers relative to the 3D7 parasite. The genes, amplified in up to six copies, encode molecules involved in cell cycle regulation. cell division, drug resistance, erythrocyte invasion, sexual differentiation and unknown functions. These together with previous findings, suggest that the malaria parasite employs gene duplications and deletions as general strategies to enhance its survival and spread. Further analysis of the impact of discovered genetic differences and the underlying mechanisms is likely to generate a better understanding of the biology and the virulence of the malaria parasite.</p
    corecore