1,520 research outputs found
Phase separation in systems with absorbing states
We study the problem of phase separation in systems with a positive definite
order parameter, and in particular, in systems with absorbing states. Owing to
the presence of a single minimum in the free energy driving the relaxation
kinetics, there are some basic properties differing from standard phase
separation. We study analytically and numerically this class of systems; in
particular we determine the phase diagram, the growth laws in one and two
dimensions and the presence of scale invariance. Some applications are also
discussed.Comment: Submitted to Europhysics Let
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications
We apply new upper limits on neutrino fluxes and the diffuse extragalactic
component of the GeV gamma-ray flux to various scenarios for ultra high energy
cosmic rays and neutrinos. As a result we find that extra-galactic top-down
sources can not contribute significantly to the observed flux of highest energy
cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce
cosmic rays via interactions with relic neutrinos is practically ruled out if
cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
Future Experiments in Relativistic Heavy Ion Collisions
The measurements at RHIC have revealed a new state of matter, which needs to
be further characterized in order to better understand its implications for the
early evolution of the universe and QCD. I will show that, in the near future,
complementary key measurements can be performed at RHIC, LHC, and FAIR. I will
focus on results than can be obtained using identified particles, a probe which
has been the basis for this conference over the past three decades. The
sophisticated detectors, built and planned, for all three accelerator
facilities enable us to measure leptons, photons, muons as well as hadrons and
resonances of all flavors almost equally well, which makes these experiments
unprecedented precision tools for the comprehensive understanding of the
physics of the early universe.Comment: 10 pages, 4 figures, Proceedings for Summary Talk at SQM 2007,
Levoca, Slovakia, June 24-29, 200
Landau-Ginzburg Description of Boundary Critical Phenomena in Two Dimensions
The Virasoro minimal models with boundary are described in the
Landau-Ginzburg theory by introducing a boundary potential, function of the
boundary field value. The ground state field configurations become non-trivial
and are found to obey the soliton equations. The conformal invariant boundary
conditions are characterized by the reparametrization-invariant data of the
boundary potential, that are the number and degeneracies of the stationary
points. The boundary renormalization group flows are obtained by varying the
boundary potential while keeping the bulk critical: they satisfy new selection
rules and correspond to real deformations of the Arnold simple singularities of
A_k type. The description of conformal boundary conditions in terms of boundary
potential and associated ground state solitons is extended to the N=2
supersymmetric case, finding agreement with the analysis of A-type boundaries
by Hori, Iqbal and Vafa.Comment: 42 pages, 13 figure
Gluon mass generation in the PT-BFM scheme
In this article we study the general structure and special properties of the
Schwinger-Dyson equation for the gluon propagator constructed with the pinch
technique, together with the question of how to obtain infrared finite
solutions, associated with the generation of an effective gluon mass.
Exploiting the known all-order correspondence between the pinch technique and
the background field method, we demonstrate that, contrary to the standard
formulation, the non-perturbative gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and
ghost contributions. We next present a comprehensive review of several subtle
issues relevant to the search of infrared finite solutions, paying particular
attention to the role of the seagull graph in enforcing transversality, the
necessity of introducing massless poles in the three-gluon vertex, and the
incorporation of the correct renormalization group properties. In addition, we
present a method for regulating the seagull-type contributions based on
dimensional regularization; its applicability depends crucially on the
asymptotic behavior of the solutions in the deep ultraviolet, and in particular
on the anomalous dimension of the dynamically generated gluon mass. A
linearized version of the truncated Schwinger-Dyson equation is derived, using
a vertex that satisfies the required Ward identity and contains massless poles
belonging to different Lorentz structures. The resulting integral equation is
then solved numerically, the infrared and ultraviolet properties of the
obtained solutions are examined in detail, and the allowed range for the
effective gluon mass is determined. Various open questions and possible
connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure
The Boltzmann equation for colourless plasmons in hot QCD plasma. Semiclassical approximation
Within the framework of the semiclassical approximation, we derive the
Boltzmann equation describing the dynamics of colorless plasmons in a hot QCD
plasma. The probability of the plasmon-plasmon scattering at the leading order
in the coupling constant is obtained. This probability is gauge-independent at
least in the class of the covariant and temporal gauges. It is noted that the
structure of the scattering kernel possesses important qualitative difference
from the corresponding one in the Abelian plasma, in spite of the fact that we
focused our study on the colorless soft excitations. It is shown that
four-plasmon decay is suppressed by the power of relative to the process of
nonlinear scattering of plasmons by thermal particles at the soft momentum
scale. It is stated that the former process becomes important in going to the
ultrasoft region of the momentum scale.Comment: 41, LaTeX, minor changes, identical to published versio
Towards a Tetravalent Chemistry of Colloids
We propose coating spherical particles or droplets with anisotropic
nano-sized objects to allow micron-scale colloids to link or functionalize with
a four-fold valence, similar to the sp3 hybridized chemical bonds associated
with, e.g., carbon, silicon and germanium. Candidates for such coatings include
triblock copolymers, gemini lipids, metallic or semiconducting nanorods and
conventional liquid crystal compounds. We estimate the size of the relevant
nematic Frank constants, discuss how to obtain other valences and analyze the
thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter
Quark-Gluon Matter
A concise review of the experimental and phenomenological progress in
high-energy heavy-ion physics over the past few years is presented. Emphasis is
put on measurements at BNL-RHIC and CERN-SPS which provide information on
fundamental properties of QCD matter at extreme values of temperature, density
and low-x. The new opportunities accessible at the LHC, which may help clarify
some of the current open issues, are also outlined.Comment: Minor changes to text. New refs. included. Updated figures with final
dat
Measuring the Higgs Sector
If we find a light Higgs boson at the LHC, there should be many observable
channels which we can exploit to measure the relevant parameters in the Higgs
sector. We use the SFitter framework to map these measurements on the parameter
space of a general weak-scale effective theory with a light Higgs state of mass
120 GeV. Our analysis benefits from the parameter determination tools and the
error treatment used in new--physics searches, to study individual parameters
and their error bars as well as parameter correlations.Comment: 45 pages, Journal version with comments from refere
Effective Field Theories and Inflation
We investigate the possible influence of very-high-energy physics on
inflationary predictions focussing on whether effective field theories can
allow effects which are parametrically larger than order H^2/M^2, where M is
the scale of heavy physics and H is the Hubble scale at horizon exit. By
investigating supersymmetric hybrid inflation models, we show that decoupling
does not preclude heavy-physics having effects for the CMB with observable size
even if H^2/M^2 << O(1%), although their presence can only be inferred from
observations given some a priori assumptions about the inflationary mechanism.
Our analysis differs from the results of hep-th/0210233, in which other kinds
of heavy-physics effects were found which could alter inflationary predictions
for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here
to produce an effective field theory description of low-energy physics. We
argue, as in hep-th/0210233, that the potential presence of heavy-physics
effects in the CMB does not alter the predictions of inflation for generic
models, but does make the search for deviations from standard predictions
worthwhile.Comment: 19 pages, LaTeX, no figures, uses JHEP
- …
