724 research outputs found
Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5
We update our previous constraints on two-component hot dark matter (axions
and neutrinos), including the recent WMAP 5-year data release. Marginalising
over sum m_nu provides m_a < 1.02 eV (95% C.L.) for the axion mass. In the
absence of axions we find sum m_nu < 0.63 eV (95% C.L.).Comment: 4 pages, 1 figure, uses iopart.cls; v2 matches published versio
Simple predictions from ALCOR_c for rehadronisation of charmed quark matter
We study the production of charmed hadrons with the help of ALCOR_c, the
algebraic coalescence model for rehadronisation of charmed quark matter.
Mesonic ratios are introduced as factors connecting various antibaryon to
baryon ratios. The resulting simple relations could serve as tests of quark
matter formation and coalescence type rehadronization in heavy ion collisions.Comment: 7 pages in Latex, 1 PS figur
Aspects of Axion Phenomenology in a slice of AdS_5
Motivated by multi-throat considerations, we study the phenomenological
implications of a bulk axion in a slice of AdS_5 with a large extra dimension:
k~0.01 eV, kR > 1. In particular, we compare axion physics with a warped
geometry to axions in flat compactifications. As in flat compactification
scenarios, we find that the mass of the axion can become independent from the
underlying Peccei-Quinn scale. Surprisingly, we find that in warped extra
dimensions the axion's invisibility, cosmological viability, and basic
phenomenology remain essentially unaltered in comparison to axions in flat
compactifications.Comment: 25 pages, 9 figure
Antihyperon-Production in Relativistic Heavy Ion Collision
Recently it has been shown that the observed antiproton yield in heavy-ion
collisions at CERN-SpS energies can be understood by multi-pionic interactions
which enforce local chemical equilibrium of the antiprotons with the nucleons
and pions. Here we show that antihyperons are driven towards local chemical
equilibrium with pions, nucleons and kaons on a timescale of less than 3 fm/c
when applying a similar argument for the antihyperons by considering the
inverse channel of annihilation reactions anti-Y + p to pions + kaons. These
multi-mesonic reactions easily explain the antihyperon yields at CERN-SpS
energies as advertised in pure thermal, hadronic models without the need of a
quark gluon plasma phase. In addition, the argument also applies for AGS
energies.Comment: 4 pages using RevTeX, 1 eps figur
Supersymmetric Large Extra Dimensions and the Cosmological Constant Problem
This article briefly summarizes and reviews the motivations for - and the
present status of - the proposal that the small size of the observed Dark
Energy density can be understood in terms of the dynamical relaxation of two
large extra dimensions within a supersymmetric higher-dimensional theory.Comment: Talk presented to Theory Canada I, Vancouver, June 2005. References
added in V
Leptonic CP violation: zero, maximal or between the two extremes
Discovery of the CP-violation in the lepton sector is one of the challenges
of the particle physics. We search for possible principles, symmetries and
phenomenological relations that can lead to particular values of the
CP-violating Dirac phase, . In this connection we discuss two extreme
cases: the zero phase, , and the maximal CP-violation, , and relate them to the peculiar pattern of the neutrino mixing. The
maximal CP-violation can be related to the reflection
symmetry. We study various aspects of this symmetry and introduce a generalized
reflection symmetry that can lead to an arbitrary phase that depends on the
parameter of the symmetry transformation. The generalized reflection symmetry
predicts a simple relation between the Dirac and Majorana phases. We also
consider the possibility of certain relations between the CP-violating phases
in the quark and lepton sectors.Comment: 34 pages, no figures; v3: version appeared in JHE
Enabling quantitative data analysis through e-infrastructures
This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences
Fragmentation of exotic oxygen isotopes
Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams
Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM
We analyse the direct detection of neutralino dark matter in the framework of
the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed
analysis of the parameter space, taking into account all the available
constraints from LEPII, we compute the neutralino-nucleon cross section, and
compare the results with the sensitivity of detectors. We find that sizable
values for the detection cross section, within the reach of dark matter
detectors, are attainable in this framework. For example, neutralino-proton
cross sections compatible with the sensitivity of present experiments can be
obtained due to the exchange of very light Higgses with m_{h_1^0}\lsim 70
GeV. Such Higgses have a significant singlet composition, thus escaping
detection and being in agreement with accelerator data. The lightest neutralino
in these cases exhibits a large singlino-Higgsino composition, and a mass in
the range 50\lsim m_{\tilde\chi_1^0}\lsim 100 GeV.Comment: Final version to appear in JHEP. References added. LaTeX, 53 pages,
23 figure
Magnon delocalization in ferromagnetic chains with long-range correlated disorder
We study one-magnon excitations in a random ferromagnetic Heisenberg chain
with long-range correlations in the coupling constant distribution. By
employing an exact diagonalization procedure, we compute the localization
length of all one-magnon states within the band of allowed energies . The
random distribution of coupling constants was assumed to have a power spectrum
decaying as . We found that for ,
one-magnon excitations remain exponentially localized with the localization
length diverging as 1/E. For a faster divergence of is
obtained. For any , a phase of delocalized magnons emerges at the
bottom of the band. We characterize the scaling behavior of the localization
length on all regimes and relate it with the scaling properties of the
long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.
- …
