2,321 research outputs found

    Noncommutative Chiral Anomaly and the Dirac-Ginsparg-Wilson Operator

    Get PDF
    It is shown that the local axial anomaly in 22-dimensions emerges naturally if one postulates an underlying noncommutative fuzzy structure of spacetime . In particular the Dirac-Ginsparg-Wilson relation on SF2{\bf S}^2_F is shown to contain an edge effect which corresponds precisely to the ``fuzzy'' U(1)AU(1)_A axial anomaly on the fuzzy sphere . We also derive a novel gauge-covariant expansion of the quark propagator in the form 1DAF=aΓ^L2+1DAa\frac{1}{{\cal D}_{AF}}=\frac{a\hat{\Gamma}^L}{2}+\frac{1}{{\cal D}_{Aa}} where a=22l+1a=\frac{2}{2l+1} is the lattice spacing on SF2{\bf S}^2_F, Γ^L\hat{\Gamma}^L is the covariant noncommutative chirality and DAa{\cal D}_{Aa} is an effective Dirac operator which has essentially the same IR spectrum as DAF{\cal D}_{AF} but differes from it on the UV modes. Most remarkably is the fact that both operators share the same limit and thus the above covariant expansion is not available in the continuum theory . The first bit in this expansion aΓ^L2\frac{a\hat{\Gamma}^L}{2} although it vanishes as it stands in the continuum limit, its contribution to the anomaly is exactly the canonical theta term. The contribution of the propagator 1DAa\frac{1}{{\cal D}_{Aa}} is on the other hand equal to the toplogical Chern-Simons action which in two dimensions vanishes identically .Comment: 26 pages, latex fil

    Dynamics of Viscous Dissipative Plane Symmetric Gravitational Collapse

    Full text link
    We present dynamical description of gravitational collapse in view of Misner and Sharp's formalism. Matter under consideration is a complicated fluid consistent with plane symmetry which we assume to undergo dissipation in the form of heat flow, radiation, shear and bulk viscosity. Junction conditions are studied for a general spacetime in the interior and Vaidya spacetime in the exterior regions. Dynamical equations are obtained and coupled with causal transport equations derived in context of Mu¨\ddot{u}ller Israel Stewart theory. The role of dissipative quantities over collapse is investigated.Comment: 17 pages, accepted for publication in Gen. Relativ. Gra

    Iterative Approximate Consensus in the presence of Byzantine Link Failures

    Full text link
    This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each directed link of the underlying communication graph represents a communication channel between a pair of nodes. We adopt the transient Byzantine link failure model [15, 16], where an omniscient adversary controls a subset of the directed communication links, but the nodes are assumed to be fault-free. Recent work has addressed the problem of reaching approximate consen- sus in incomplete graphs with Byzantine nodes using a restricted class of iterative algorithms that maintain only a small amount of memory across iterations [22, 21, 23, 12]. However, to the best of our knowledge, we are the first to consider approximate consensus in the presence of Byzan- tine links. We extend our past work that provided exact characterization of graphs in which the iterative approximate consensus problem in the presence of Byzantine node failures is solvable [22, 21]. In particular, we prove a tight necessary and sufficient condition on the underlying com- munication graph for the existence of iterative approximate consensus algorithms under transient Byzantine link model. The condition answers (part of) the open problem stated in [16].Comment: arXiv admin note: text overlap with arXiv:1202.609

    Community mobilization in Mumbai slums to improve perinatal care and outcomes: a cluster randomized controlled trial.

    Get PDF
    Improving maternal and newborn health in low-income settings requires both health service and community action. Previous community initiatives have been predominantly rural, but India is urbanizing. While working to improve health service quality, we tested an intervention in which urban slum-dweller women's groups worked to improve local perinatal health

    Non-adiabatic collapse of a quasi-spherical radiating star

    Full text link
    A model is proposed of a collapsing quasi-spherical radiating star with matter content as shear-free isotropic fluid undergoing radial heat-flow with outgoing radiation. To describe the radiation of the system, we have considered both plane symmetric and spherical Vaidya solutions. Physical conditions and thermodynamical relations are studied using local conservation of momentum and surface red-shift. We have found that for existence of radiation on the boundary, pressure on the boundary is not necessary.Comment: 8 Latex pages, No figures, Revtex styl

    Scalar Solitons on the Fuzzy Sphere

    Full text link
    We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.Comment: 24 pages, 2 figures, typo corrected and stylistic changes. v3: reference adde

    Impurity spin relaxation in S=1/2 XX chains

    Full text link
    Dynamic autocorrelations (\alpha=x,z) of an isolated impurity spin in a S=1/2 XX chain are calculated. The impurity spin, defined by a local change in the nearest-neighbor coupling, is either in the bulk or at the boundary of the open-ended chain. The exact numerical calculation of the correlations employs the Jordan-Wigner mapping from spin operators to Fermi operators; effects of finite system size can be eliminated. Two distinct temperature regimes are observed in the long-time asymptotic behavior. At T=0 only power laws are present. At high T the x correlation decays exponentially (except at short times) while the z correlation still shows an asymptotic power law (different from the one at T=0) after an intermediate exponential phase. The boundary impurity correlations follow power laws at all T. The power laws for the z correlation and the boundary correlations can be deduced from the impurity-induced changes in the properties of the Jordan-Wigner fermion states.Comment: Final version to be published in Phys. Rev. B. Three references added, extended discussion of relation to previous wor

    New Samarium and Neodymium based admixed ferromagnets with near zero net magnetization and tunable exchange bias field

    Full text link
    Rare earth based intermetallics, SmScGe and NdScGe, are shown to exhibit near zero net magnetization with substitutions of 6 to 9 atomic percent of Nd and 25 atomic percent of Gd, respectively. The notion of magnetic compensation in them is also elucidated by the crossover of zero magnetization axis at low magnetic fields (less than 103 Oe) and field-induced reversal in the orientation of the magnetic moments of the dissimilar rare earth ions at higher magnetic fields. These magnetically ordered materials with no net magnetization and appreciable conduction electron polarization display an attribute of an exchange bias field, which can be tuned. The attractively high magnetic ordering temperatures of about 270 K, underscore the importance of these materials for potential applications in spintronics.Comment: 6 page text + 5 figure

    Gravitational Collapse in Higher Dimensional Husain Space-Time

    Full text link
    We investigate exact solution in higher dimensional Husain model for a null fluid source with pressure pp and density ρ\rho are related by the following relations (i) p=kρp=k\rho, (ii) p=kρB(v)ραp=k\rho-\frac{B(v)}{\rho^{\alpha}} (variable modified Chaplygin) and (iii) p=kραp=k\rho^{\alpha} (polytropic). We have studied the nature of singularity in gravitational collapse for the above equations of state and also for different choices of the of the parameters kk and BB namely, (i) k=0k=0, B=B= constant (generalized Chaplygin), (ii) B=B= constant (modified Chaplygin). It is found that the nature of singularity is independent of these choices of different equation of state except for variable Chaplygin model. Choices of various parameters are shown in tabular form. Finally, matching of Szekeres model with exterior Husain space-time is done.Comment: 12 latex pages, No figure, RevTex styl
    corecore