1,824 research outputs found
Recommended from our members
Financing SMEs: a model for optimising the capital structure
This paper argues that the existing finance literature is inadequate with respect to its cov-erage of capital structure of small and medium sized enterprises (SMEs). In particular it is argued that the cost of equity (being both conceptually ill defined and empirically non quantifiable) is not applicable to the capital structure decisions for a large proportion of SMEs and the optimal capital structure depends only on the mix of short and long term debt. The paper then presents a model for optimising the debt mix and demonstrates its practical application using an Italian firm’s debt structure as a case study
Accurate high-resolution depth profiling of magnetron sputtered transition metal alloy films containing light species: A multi-method approach
We present an assessment of a multi-method approach based on ion beam
analysis to obtain high-resolution depth profiles of the total chemical
composition of complex alloy systems. As a model system we employ an alloy
based on several transition metals and containing light species. Samples have
been investigated by a number of different ion-beam based techniques, i.e.,
Rutherford Backscattering Spectrometry, Particle-Induced X-ray Emission,
Elastic Backscattering Spectrometry and Time-of-Flight/Energy Elastic Recoil
Detection Analysis. Sets of spectra obtained from these different techniques
were analyzed both independently and following an iterative and self-consistent
approach yielding a more accurate depth profile of the sample, including both
metallic heavy constituents (Cr, Fe and Ni) as well as the rather reactive
light species (C, O) in the alloy. A quantitative comparison in terms of
achievable precision and accuracy is made and the limitations of the single
method approach are discussed for the different techniques. The multi-method
approach is shown to yield significantly improved and accurate information on
stoichiometry, depth distribution, and thickness of the alloy with the
improvements being decisive for a detailed correlation of composition to the
material properties such as corrosion strength. The study also shows the
increased relative importance of experimental statistics for the achievable
accuracy in the multi-method approach.Comment: 18 pages, 6 figures and 1 tabl
Emergence of pulled fronts in fermionic microscopic particle models
We study the emergence and dynamics of pulled fronts described by the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic
reaction-diffusion process A + A A$ on the lattice when only a particle is
allowed per site. To this end we identify the parameter that controls the
strength of internal fluctuations in this model, namely, the number of
particles per correlated volume. When internal fluctuations are suppressed, we
explictly see the matching between the deterministic FKPP description and the
microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a
Rapid Communicatio
Evaluating GAIA performances on eclipsing binaries. I. Orbits and stellar parameters for V505 Per, V570 Per and OO Peg
The orbits and physical parameters of three detached, double-lined A-F
eclipsing binaries have been derived combining H_P, V_T, B_T photometry from
the Hipparcos/Tycho mission with 8500-8750 Ang ground-based spectroscopy,
mimicking the photometric+spectroscopic observations that should be obtained by
GAIA, the approved Cornerstone 6 mission by ESA. This study has two main
objectives, namely (a) to derive reasonable orbits for a number of new
eclipsing binaries and (b) to evaluate the expected performances by GAIA on
eclipsing binaries and the accuracy achievable on the determination of
fundamental stellar parameters like masses and radii. It is shown that a 1%
precision in the basic stellar parameters can be achieved by GAIA on well
observed detached eclipsing binaries provided that the spectroscopic
observations are performed at high enough resolution. Other types of eclipsing
binaries (including semi-detached and contact types) and different spectral
types will be investigated in following papers along this series.Comment: A&A, 11 pages, 5 figures, 5 table
Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff
Recently it has been shown that when an equation that allows so-called pulled
fronts in the mean-field limit is modelled with a stochastic model with a
finite number of particles per correlation volume, the convergence to the
speed for is extremely slow -- going only as .
In this paper, we study the front propagation in a simple stochastic lattice
model. A detailed analysis of the microscopic picture of the front dynamics
shows that for the description of the far tip of the front, one has to abandon
the idea of a uniformly translating front solution. The lattice and finite
particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the
front, while the average front behind it ``crosses over'' to a uniformly
translating solution. In this formulation, the effect of stochasticity on the
asymptotic front speed is coded in the probability distribution of the times
required for the advancement of the ``foremost bin''. We derive expressions of
these probability distributions by matching the solution of the far tip with
the uniformly translating solution behind. This matching includes various
correlation effects in a mean-field type approximation. Our results for the
probability distributions compare well to the results of stochastic numerical
simulations. This approach also allows us to deal with much smaller values of
than it is required to have the asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.
The distance to the Pleiades from orbital solution of the double-lined eclipsing binary HD 23642
Combining precise B,V photoelectric photometry and radial velocities, we have
been able to derive a firm orbital solution and accurate physical parameters
for the newly discovered eclipsing binary HD 23642 in the Pleiades open
cluster. The resulting distance to the binary, and therefore to the cluster, is
132 +/- 2 pc. This closely confirms the distance modulus obtained by classical
main sequence fitting methods (m-M = 5.60 or 132 pc), moving cluster techniques
and the astrometric orbit of Atlas. This is the first time the distance to a
member of the Pleiades is derived by orbital solution of a double-lined
eclipsing binary, and it is intended to contribute to the ongoing discussion
about the discordant Hipparcos distance to the cluster.Comment: accepted in press in A&A as Letter to the Edito
LBT observations of the HR 8799 planetary system: First detection of HR8799e in H band
We have performed H and Ks band observations of the planetary system around
HR 8799 using the new AO system at the Large Binocular Telescope and the PISCES
Camera. The excellent instrument performance (Strehl ratios up to 80% in H
band) enabled detection the inner planet HR8799e in the H band for the first
time. The H and Ks magnitudes of HR8799e are similar to those of planets c and
d, with planet e slightly brighter. Therefore, HR8799e is likely slightly more
massive than c and d. We also explored possible orbital configurations and
their orbital stability. We confirm that the orbits of planets b, c and e are
consistent with being circular and coplanar; planet d should have either an
orbital eccentricity of about 0.1 or be non-coplanar with respect to b and c.
Planet e can not be in circular and coplanar orbit in a 4:2:1 mean motion
resonances with c and d, while coplanar and circular orbits are allowed for a
5:2 resonance. The analysis of dynamical stability shows that the system is
highly unstable or chaotic when planetary masses of about 5 MJup for b and 7
MJup for the other planets are adopted. Significant regions of dynamical
stability for timescales of tens of Myr are found when adopting planetary
masses of about 3.5, 5, 5, and 5 Mjup for HR 8799 b, c, d, and e respectively.
These masses are below the current estimates based on the stellar age (30 Myr)
and theoretical models of substellar objects.Comment: 13 pages, 10 figures, A&A, accepte
Breakup reaction models for two- and three-cluster projectiles
Breakup reactions are one of the main tools for the study of exotic nuclei,
and in particular of their continuum. In order to get valuable information from
measurements, a precise reaction model coupled to a fair description of the
projectile is needed. We assume that the projectile initially possesses a
cluster structure, which is revealed by the dissociation process. This
structure is described by a few-body Hamiltonian involving effective forces
between the clusters. Within this assumption, we review various reaction
models. In semiclassical models, the projectile-target relative motion is
described by a classical trajectory and the reaction properties are deduced by
solving a time-dependent Schroedinger equation. We then describe the principle
and variants of the eikonal approximation: the dynamical eikonal approximation,
the standard eikonal approximation, and a corrected version avoiding Coulomb
divergence. Finally, we present the continuum-discretized coupled-channel
method (CDCC), in which the Schroedinger equation is solved with the projectile
continuum approximated by square-integrable states. These models are first
illustrated by applications to two-cluster projectiles for studies of nuclei
far from stability and of reactions useful in astrophysics. Recent extensions
to three-cluster projectiles, like two-neutron halo nuclei, are then presented
and discussed. We end this review with some views of the future in
breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be
published as a volume of "Lecture Notes in Physics" (Springer
Kinematic reduction of reaction-diffusion fronts with multiplicative noise: Derivation of stochastic sharp-interface equations
We study the dynamics of generic reaction-diffusion fronts, including pulses
and chemical waves, in the presence of multiplicative noise. We discuss the
connection between the reaction-diffusion Langevin-like field equations and the
kinematic (eikonal) description in terms of a stochastic moving-boundary or
sharp-interface approximation. We find that the effective noise is additive and
we relate its strength to the noise parameters in the original field equations,
to first order in noise strength, but including a partial resummation to all
orders which captures the singular dependence on the microscopic cutoff
associated to the spatial correlation of the noise. This dependence is
essential for a quantitative and qualitative understanding of fluctuating
fronts, affecting both scaling properties and nonuniversal quantities. Our
results predict phenomena such as the shift of the transition point between the
pushed and pulled regimes of front propagation, in terms of the noise
parameters, and the corresponding transition to a non-KPZ universality class.
We assess the quantitative validity of the results in several examples
including equilibrium fluctuations, kinetic roughening, and the noise-induced
pushed-pulled transition, which is predicted and observed for the first time.
The analytical predictions are successfully tested against rigorous results and
show excellent agreement with numerical simulations of reaction-diffusion field
equations with multiplicative noise.Comment: 17 pages, 6 figure
- …
