180 research outputs found

    Thermodynamic stability and Watson–Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect

    Get PDF
    Short interfering RNA (siRNA) may down-regulate many unintended genes whose transcripts possess complementarity to the siRNA seed region, which contains 7 nt. The capability of siRNA to induce this off-target effect was highly correlated with the calculated melting temperature or standard free-energy change for formation of protein-free seed duplex, indicating that thermodynamic stability of seed duplex formed between the seed and target is one of the major factor in determining the degree of off-target effects. Furthermore, unlike intended gene silencing (RNA interference), off-target effect was completely abolished by introduction of a G:U pair into the seed duplex, and this loss in activity was completely recovered by a second mutation regenerating Watson–Crick pairing, indicating that seed duplex Watson–Crick pairing is also essential for off-target gene silencing. The off-target effect was more sensitive to siRNA concentration compared to intended gene silencing, which requires a near perfect sequence match between the siRNA guide strand and target mRNA

    Computational Design of Artificial RNA Molecules For Gene Regulation

    Get PDF
    This volume provides an overview of RNA bioinformatics methodologies, including basic strategies to predict secondary and tertiary structures, and novel algorithms based on massive RNA sequencing. Interest in RNA bioinformatics has rapidly increased thanks to the recent high-throughput sequencing technologies allowing scientists to investigate complete transcriptomes at single nucleotide resolution. Adopting advanced computational technics, scientists are now able to conduct more in-depth studies and present them to you in this book. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and equipment, step-by-step, readily reproducible bioinformatics protocols, and key tips to avoid known pitfalls.Authoritative and practical, RNA Bioinformatics seeks to aid scientists in the further study of bioinformatics and computational biology of RNA

    siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi), mediated by 21-nucleotide (nt)-length small interfering RNAs (siRNAs), is a powerful tool not only for studying gene function but also for therapeutic applications. RNAi, requiring perfect complementarity between the siRNA guide strand and the target mRNA, was believed to be extremely specific. However, a recent growing body of evidence has suggested that siRNA could down-regulate unintended genes whose transcripts possess complementarity to the 7-nt siRNA seed region. This off-target gene silencing may often provide incongruous results obtained from knockdown experiments, leading to misinterpretation. Thus, an efficient algorithm for designing functional siRNAs with minimal off-target effect based on the mechanistic features is considered of value.</p> <p>Results</p> <p>We present siDirect 2.0, an update of our web-based software siDirect, which provides functional and off-target minimized siRNA design for mammalian RNAi. The previous version of our software designed functional siRNAs by considering the relationship between siRNA sequence and RNAi activity, and provided them along with the enumeration of potential off-target gene candidates by using a fast and sensitive homology search algorithm. In the new version, the siRNA design algorithm is extensively updated to eliminate off-target effects by reflecting our recent finding that the capability of siRNA to induce off-target effect is highly correlated to the thermodynamic stability, or the melting temperature (Tm), of the seed-target duplex, which is formed between the nucleotides positioned at 2-8 from the 5' end of the siRNA guide strand and its target mRNA. Selection of siRNAs with lower seed-target duplex stabilities (benchmark Tm < 21.5°C) followed by the elimination of unrelated transcripts with nearly perfect match should minimize the off-target effects.</p> <p>Conclusion</p> <p>siDirect 2.0 provides functional, target-specific siRNA design with the updated algorithm which significantly reduces off-target silencing. When the candidate functional siRNAs could form seed-target duplexes with Tm values below 21.5°C, and their 19-nt regions spanning positions 2-20 of both strands have at least two mismatches to any other non-targeted transcripts, siDirect 2.0 can design at least one qualified siRNA for >94% of human mRNA sequences in RefSeq. siDirect 2.0 is available at <url>http://siDirect2.RNAi.jp/</url>.</p

    Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect

    Get PDF
    Short interfering RNA (siRNA)-based RNA interference (RNAi) is widely used for target gene knockdown in mammalian cells. To clarify the position-dependent functions of ribonucleotides in siRNA, siRNAs with various DNA substitutions were constructed. The following could be simultaneously replaced with DNA without substantial loss of gene-silencing activity: the seed arm, which occupies positions 2–8 from the 5′end of the guide strand; its complementary sequence; the 5′end of the guide strand and the 3′overhang of the passenger strand. However, most part of the 3′ two-thirds of the guide strand could not be replaced with DNA, possibly due to binding of RNA-recognition proteins such as TRBP2 and Ago2. The passenger strand with DNA in the 3′end proximal region was incapable of inducing off-target effect. Owing to lesser stability of DNA–RNA hybrid than RNA duplex, modified siRNAs with DNA substitution in the seed region were, in most cases, incapable to exert unintended gene silencing due to seed sequence homology. Thus, it may be possible to design DNA–RNA chimeras which effectively silence mammalian target genes without silencing unintended genes

    A Novel, Single Algorithm Approach to Predict Acenocoumarol Dose Based on CYP2C9 and VKORC1 Allele Variants

    Get PDF
    The identification of CYP2C9 and VKORC1 genes has strongly stimulated the research on pharmacogenetics of coumarins in the last decade. We assessed the combined influence of CYP2C9 *2 and *3, and VKORC1 c.-1639G>A, 497C>G, and 1173C>T variants, on acenocoumarol dosage using a novel algorithm approach, in 193 outpatients who had achieved stable anticoagulation. We constructed an “acenocoumarol-dose genotype score” (AGS, maximum score = 100) based on the number of alleles associated with higher acenocoumarol dosage carried by each subject for each polymorphism. The mean AGS was higher in the high-dose (>28mg/week) compared with the low-dose (<7mg/week) group (mean(SEM) of 84.1±3.4 vs. 62.2±4.8, P = 0.008). An AGS>70 was associated with an increased odds ratio (OR) of requiring high acenocoumarol dosage (OR: 3.347; 95%CI: 1.112–10.075; P = 0.032). In summary, although more research is necessary in other patient cohorts, and this algorithm should be replicated in an independent sample, our data suggest that the AGS algorithm could be used to help discriminating patients requiring high acenocoumarol doses to achieve stable anti-coagulation

    E-Cadherin Is Transcriptionally Activated via Suppression of ZEB1 Transcriptional Repressor by Small RNA-Mediated Gene Silencing

    Get PDF
    RNA activation has been reported to be induced by small interfering RNAs (siRNAs) that act on the promoters of several genes containing E-cadherin. In this study, we present an alternative mechanism of E-cadherin activation in human PC-3 cells by siRNAs previously reported to possess perfect-complementary sequences to E-cadherin promoter. We found that activation of E-cadherin can be also induced via suppression of ZEB1, which is a transcriptional repressor of E-cadherin, by seed-dependent silencing mechanism of these siRNAs. The functional seed-complementary sites of the siRNAs were found in the coding region in addition to the 3′ untranslated region of ZEB1 mRNA. Promoter analyses indicated that E-boxes, which are ZEB1-binding sites, in the upstream promoter region are indispensable for E-cadherin transcription by the siRNAs. Thus, the results caution against ignoring siRNA seed-dependent silencing effects in genome-wide transcriptional regulation. In addition, members of miR-302/372/373/520 family, which have the same seed sequences with one of the siRNAs containing perfect-complementarity to E-cadherin promoter, are also found to activate E-cadherin transcription. Thus, E-cadherin could be upregulated by the suppression of ZEB1 transcriptional repressor by miRNAs in vivo

    A systematic analysis of the effect of target RNA structure on RNA interference

    Get PDF
    RNAi efficiency is influenced by local RNA structure of the target sequence. We studied this structure-based resistance in detail by targeting a perfect RNA hairpin and subsequently destabilized its tight structure by mutation, thereby gradually exposing the target sequence. Although the tightest RNA hairpins were completely resistant to RNAi, we observed an inverse correlation between the overall target hairpin stability and RNAi efficiency within a specific thermodynamic stability (ΔG) range. Increased RNAi efficiency was shown to be caused by improved binding of the siRNA to the destabilized target RNA hairpins. The mutational effects vary for different target regions. We find an accessible target 3′ end to be most important for RNAi-mediated inhibition. However, these 3′ end effects cannot be reproduced in siRNA-target RNA-binding studies in vitro, indicating the important role of RISC components in the in vivo RNAi reaction. The results provide a more detailed insight into the impact of target RNA structure on RNAi and we discuss several possible implications. With respect to lentiviral-mediated delivery of shRNA expression cassettes, we present a ΔG window to destabilize the shRNA insert for vector improvement, while avoiding RNAi-mediated self-targeting during lentiviral vector production

    Enhancement of Allele Discrimination by Introduction of Nucleotide Mismatches into siRNA in Allele-Specific Gene Silencing by RNAi

    Get PDF
    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs) against mutant alleles of the human Prion Protein (PRNP) gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the ‘seed region’ of microRNAs. Due to the essential role of the ‘seed region’ of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs), of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3′-ends of sense-strand siRNA elements, which possibly increase the assembly of antisense-strand (guide) siRNAs into RNA-induced silencing complexes (RISCs), may enhance ASP-RNAi in the case of inert siRNA duplexes. Therefore, the data presented here suggest that structural modification of functional portions of an siRNA duplex by base substitution could greatly influence allele discrimination and gene silencing, thereby contributing to enhancement of ASP-RNAi
    corecore