47 research outputs found
Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures
The reliable determination of past seawater temperature is fundamental to paleoclimate studies. We test the robustness of two paleotemperature proxies by combining Mg/Ca and clumped isotopes (Δ47) on the same specimens of core top planktonic foraminifera. The strength of this approach is that Mg/Ca and Δ47 are measured on the same specimens of foraminifera, thereby providing two independent estimates of temperature. This replication constitutes a rigorous test of individual methods with the advantage that the same approach can be applied to fossil specimens. Aliquots for Mg/Ca and clumped analyses are treated in the same manner following a modified cleaning procedure of foraminifera for trace element and isotopic analyses. We analysed eight species of planktonic foraminifera from coretop samples over a wide range of temperatures from 2 to 29°C. We provide a new clumped isotope temperature calibrations using subaqueous cave carbonates, which is consistent with recent studies. Tandem Mg/Ca–Δ47 results follow an exponential curve as predicted by temperature calibration equations. Observed deviations from the predicted Mg/Ca-Δ47 relationship are attributed to the effects of Fe-Mn oxide coatings, contamination, or dissolution of foraminiferal tests. This coupled approach provides a high degree of confidence in temperature estimates when Mg/Ca and Δ47 yield concordant results, and can be used to infer the past δ18O of seawater (δ18Osw) for paleoclimate studies
Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations
The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (>5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks
Phenotyping of lymphoproliferative tumours generated in xenografts of non-small cell lung cancer
Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. / Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). / Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. / Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines
Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?
Livestock is known to contribute significantly to climate change and to negatively impact global nitrogen cycles and biodiversity. However, there has been little research on economically efficient policies for regulating meat production and consumption. In the absence of first-best policy instruments for the livestock sector, second-best consumption taxes on meat can address multiple environmental externalities simultaneously as well as improve diet-related public health. In this article, we review the empirical evidence on the social costs of meat and examine the rationales for taxing meat consumption in high-income countries. We approach these issues from the perspective of public, behavioral, and welfare economics, focusing in particular on (1) the interaction of multiple environmental externalities of meat production and consumption, (2) “alternative protein” technologies, (3) adverse effects on human health, (4) animal welfare, and (5) distributional effects of meat taxation. We present preliminary estimates of the environmental social costs associated with meat consumption and find that meat is significantly underpriced. We conclude by identifying several directions for future research on optimal meat taxation
Crystallographic Preferred Orientation of Olivine in Sheared Partially Molten Rocks: The Source of the “a‐c Switch”
To investigate the mechanism that produces the crystallographic preferred orientations (CPO) characteristic of sheared partially molten rocks of mantle composition, we analyzed the microstructures of samples of olivine plus 7% basaltic melt deformed in torsion to shear strains as large as urn:x-wiley:15252027:media:ggge21493:ggge21493-math-0001 13.3. Electron backscattered diffraction (EBSD) observations reveal a CPO characterized by a weak a‐c girdle in the shear plane that develops by urn:x-wiley:15252027:media:ggge21493:ggge21493-math-0002 4. This CPO, which exhibits a slightly stronger alignment of [001] than [100] axes in the shear direction, changes little in both strength and distribution with increasing stress and with increasing strain. Furthermore, it is significantly weaker than the CPO observed for dry, melt‐free olivine aggregates. Orientation maps correlated with grain shape measurements from tangential, radial, and transverse sections indicate that olivine grains are longer along [001] axes than along [100] axes and shortest along [010] axes. This morphology is similar to that of olivine grains in a mafic melt. We conclude that the weak a‐c girdle observed in sheared partially molten rocks reflects contributions from two processes. Due to their shape‐preferred orientation (SPO), grains rotate to align their [001] axes parallel to the flow direction. At the same time, dislocation glide on the (010)[100] slip system rotates [100] axes into the flow direction. The presence of this CPO in partially molten regions of the upper mantle significantly impacts the interpretation of seismic anisotropy and kinematics of flow
Two different macaviruses, ovine herpesvirus-2 and caprine herpesvirus-2, behave differently in water buffaloes than in cattle or in their respective reservoir species
The ongoing global spread of “exotic” farm animals, such as water buffaloes, which carry their native sets of viruses, may bear unknown risks for the animals, into whose ecological niches the former are introduced and vice versa. Here, we report on the occurrence of malignant catarrhal fever (MCF) on Swiss farms, where “exotic” water buffaloes were kept together with “native” animals, i.e. cattle, sheep, and goats. In the first farm with 56 water buffaloes, eight cases of MCF due to ovine herpesvirus-2 (OvHV-2) were noted, whereas additional ten water buffaloes were subclinically infected with either OvHV-2 or caprine herpesvirus-2 (CpHV-2). On the second farm, 13 water buffaloes were infected with CpHV-2 and two of those succumbed to MCF. In neither farm, any of the two viruses were detected in cattle, but the Macaviruses were present at high prevalence among their original host species, sheep and goats, respectively. On the third farm, sheep were kept well separated from water buffaloes and OvHV-2 was not transmitted to the buffaloes, despite of high prevalence of the virus among the sheep. Macavirus DNA was frequently detected in the nasal secretions of virus-positive animals and in one instance OvHV-2 was transmitted vertically to an unborn water buffalo calf. Thus, water buffaloes seem to be more susceptible than cattle to infection with either Macavirus; however, MCF did not develop as frequently. Therefore, water buffaloes seem to represent an interesting intermediate-type host for Macaviruses. Consequently, water buffaloes in their native, tropic environments may be vulnerable and endangered to viruses that originate from seemingly healthy, imported sheep and goats
Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns
Seabed topography is ubiquitous across basin-floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well-documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provides the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across-strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south-east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand-prone part and a thick mud-prone part and the confining slope result in facies transition from thick-bedded sandstones to thin-bedded heterolithic lobe fringe-type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringe. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin-floor topography has on flow behaviour and depositional architecture in the Laingsburg depocentre, Karoo Basin; presenting a new aggradational lobe fringe facies association and recognition criteria for subtle confinement in less well-exposed and subsurface basin fills
Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns
Seabed topography is ubiquitous across basin-floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well-documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provide the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across-strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south-east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand-prone part and a thick mud-prone part and the confining slope results in facies transition from thick-bedded sandstones to thin-bedded heterolithic lobe fringe-type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringes. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin-floor topography has on flow behaviour and depositional architecture of submarine lobe complexes. In addition, we present a new aggradational lobe fringe facies associations and recognition criteria for subtle confinement in less well-exposed and subsurface basin fills
Canadian West Coast Hermetics : The Metaphysical Landscape = Les Hermétiques canadiens de la Côte Ouest : Le paysage métaphysique
Six artists explore aspects of mysticism and the collective unconscious through collage and painting using archetypal imagery and abstraction. Includes artists' statements and biographical notes
The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae
The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, αalkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to 35. αalkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85≤R2≤0.97; p<0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone δD has the potential to be used as a salinity proxy in neritic areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of αalkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, αalkenones-water increased by 0.0019 per salinity unit (S-1), but was less sensitive at 0.0010 and 0.0008S-1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa αalkenones-water increased by 0.0010S-1 in the early stationary phase and by 0.0008S-1 during the late stationary phase. Assuming the shift in sensitivity of αalkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of haptophytes will affect the sensitivity of the alkenone salinity proxy. The proxy is likely to be most sensitive to salinity when alkenones are produced in a state similar to exponential growth
