734 research outputs found
A Distributed System for Storing and Processing Data from Earth-observing Satellites: System Design and Performance Evaluation of the Visualisation Tool
We present a distributed system for storage, processing, three-dimensional
visualisation and basic analysis of data from Earth-observing satellites. The
database and the server have been designed for high performance and
scalability, whereas the client is highly portable thanks to having been
designed as a HTML5- and WebGL-based Web application. The system is based on
the so-called MEAN stack, a modern replacement for LAMP which has steadily been
gaining traction among high-performance Web applications. We demonstrate the
performance of the system from the perspective of an user operating the client.Comment: 6 pages, 6 figures. To be published in the proceedings of the 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2016
Characterization of cyclic nucleotide phosphodiesterase isoenzymes in the human ureter and their functional role in vitro
Role of the nitric oxide donor linsidomine chlorhydrate (SIN-1) in the diagnosis and treatment of erectile dysfunction
Tierarten und Großpilze der Lebensraumtypen des Anhangs I der FFH-Richtlinie
Die Zusammenstellung der Liste der charakteristischen Tierarten erfolgte analog der vom LAU (2002) geschilderten Vorgehensweise. Inzwischen konnten durch die vom LAU in den FFH-LRT Sachsen-Anhalts durchgeführten intensiven faunistischen Untersuchungen ein besseres Bild der charakteristischen und regional typischen Artengemeinschaften vermittelt werden. Allerdings stehen für einige der neu aufgenommenen FFH-LRT solche Untersuchungen noch aus. Deshalb werden hier in naher Zukunft verstärkte Anstrengungen nötig sein, die Wissenslücken zu schließen
IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia
IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination
An endoplasmic reticulum (ER)-directed fusion protein comprising a bacterial subtilisin domain and the human cytokine interleukin 6 is efficiently cleaved in planta
A major limitation of plant bioreactors is the lack of suitable and cost-effective purification methods for the extraction of pharmaceutical-grade proteins. In contrast to that, there are numerous established purification systems for heterologous proteins, expressed in Escherichia coli, which are used for the commercial production of therapeutic proteins. Therefore, we wanted to adapt the BioRad Profinity eXact<sup>TM</sup> one-step protein purification system (originally designed for microbial expression platforms) to purify recombinant proteins in crude plant extracts. This system based on the prodomain of microbial subtilase as fusion partner and a column-bound subtilisin protease. The engineered protease captures and cleaves the fusion protein, retaining the tag and releasing the native protein into the eluate. The subtilase tag was fused to human interleukin 6 (IL6) and transiently expressed in Nicotiana benthamiana leaves using the MagnICON system. The fusion protein was expressed at lower levels than native IL6, suggesting it is expressed less efficiently and/or has a lower stability. However, free IL6 was also detected in the extract and was unaffected by the addition of protease inhibitors during extraction, suggesting that the fusion protein is cleaved in planta by endogenous proteases. Purification of the recombinant protein using the Profinity eXact<sup>TM</sup> system reduced the yield still further. The inefficient production of tagged IL6, coupled with the extensive losses during purification, indicate that the Profinity eXact<sup>TM</sup> system is not suitable for the extraction of IL6 from crude plant extracts.Keywords: Tobacco, transient expression, endoplasmic reticulum, Profinity protein purification, partial cleavageAfrican Journal of Biotechnology Vol. 12(3), pp. 311-31
3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured via digital light processing
Hydrogels are three-dimensional hydrophilic polymeric networks absorbing up to and even more than 90 wt% of water. These superabsorbent polymers retain their shape during the swelling process while enlarging their volume and mass. In addition to their swelling behavior, hydrogels can possess other interesting properties, such as biocompatibility, good rheological behavior, or even antimicrobial activity. This versatility qualifies hydrogels for many medical applications, especially drug delivery systems. As recently shown, polyelectrolyte-based hydrogels offer beneficial properties for long-term and stimulus-responsive applications. However, the fabrication of complex structures and shapes can be difficult to achieve with common polymerization methods. This obstacle can be overcome by the use of additive manufacturing. 3D printing technology is gaining more and more attention as a method of producing materials for biomedical applications and medical devices. Photopolymerizing 3D printing methods offer superior resolution and high control of the photopolymerization process, allowing the fabrication of complex and customizable designs while being less wasteful. In this work, novel synthetic hydrogels, consisting of [2-(acryloyloxy) ethyl]trimethylammonium chloride (AETMA) as an electrolyte monomer and poly(ethylene glycol)-diacrylate (PEGDA) as a crosslinker, 3D printed via Digital Light Processing (DLP) using a layer height of 100 μm, are reported. The hydrogels obtained showed a high swelling degree q∞m,t ∼ 12 (24 h in PBS; pH 7; 37 °C) and adjustable mechanical properties with high stretchability (ϵmax ∼ 300%). Additionally, we embedded the model drug acetylsalicylic acid (ASA) and investigated its stimulus-responsive drug release behaviour in different release media. The stimulus responsiveness of the hydrogels is mirrored in their release behavior and could be exploited in triggered as well as sequential release studies, demonstrating a clear ion exchange behavior. The received 3D-printed drug depots could also be printed in complex hollow geometry, exemplarily demonstrated via an individualized frontal neo-ostium implant prototype. Consequently, a drug-releasing, flexible, and swellable material was obtained, combining the best of both worlds: the properties of hydrogels and the ability to print complex shapes
Recombinant production of the human complement factor 5a in Escherichia coli
Up to now, the human complement factor 5a (C5a) has only been produced in small quantities in Escherichia coli in a soluble, bioactive conformation, which is not suitable for commercial production systems. This stems from the extremely high instability of C5a, as well as its aggregation-prone nature. Therefore, we analyzed several different methods for optimizing the solubility and biological activity of C5a produced by E. coli. The solubility of C5a was efficiently improved by expressing it as a glutathione-S-transferase (GST) fusion protein and, to a lesser extent, by lowering the cultivation temperature. Neither reducing the inductor concentration (isopropylthio-β-galactoside, IPTG) of the T7lac promotor nor the concomitant overexpression of endogenous chaperones was effective. However, the biological activity of the protein was improved by the overexpression of chaperones together with cultivation at 22°C, while fusion to GST slightly reduced its activity. Consequently, low cultivation temperature and the overexpression of chaperones seem to be the optimal strategy for expression of appropriate amounts of soluble and functional C5a. These findings should be the basis for the transfer to large-scale fermentation. Using C5a as an example, we showed that strain engineering in combination with specific cultivation conditions improve the production of difficult-to-express proteins in appropriate amounts and in a functional conformation facilitating the commercial manufacturing under good manufacturing practices (GMP) conditions.Keywords: Complement factor 5a (C5a), Origami 2, BL21, periplasm, cytoplasm, chaperones, Glutathione-S-Transferase (GST), temperatur
Система классификации и кодирования информации в ремонтных технологиях
Запропоновані схеми параметрів класифікації з'єднань, технологічних операцій розбирання із застосуванням індукційного нагріву та індукційно-нагріваючого обладнання з виділеними лімітуючими параметрами, які є зв'язуючою ланкою між ними.The charts of parameters of classification of connections are offered, technological operations of sorting out with the use of the induction heating and induction-heater equipment with the selected parameters which are a connective link between them
- …
