4,441 research outputs found

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    Central limit behavior of deterministic dynamical systems

    Full text link
    We investigate the probability density of rescaled sums of iterates of deterministic dynamical systems, a problem relevant for many complex physical systems consisting of dependent random variables. A Central Limit Theorem (CLT) is only valid if the dynamical system under consideration is sufficiently mixing. For the fully developed logistic map and a cubic map we analytically calculate the leading-order corrections to the CLT if only a finite number of iterates is added and rescaled, and find excellent agreement with numerical experiments. At the critical point of period doubling accumulation, a CLT is not valid anymore due to strong temporal correlations between the iterates. Nevertheless, we provide numerical evidence that in this case the probability density converges to a qq-Gaussian, thus leading to a power-law generalization of the CLT. The above behavior is universal and independent of the order of the maximum of the map considered, i.e. relevant for large classes of critical dynamical systems.Comment: 6 pages, 5 figure

    SAR image reconstruction by expectation maximization based matching pursuit

    Get PDF
    Cataloged from PDF version of article.Synthetic Aperture Radar (SAR) provides high resolution images of terrain and target reflectivity. SAR systems are indispensable in many remote sensing applications. Phase errors due to uncompensated platform motion degrade resolution in reconstructed images. A multitude of autofocusing techniques has been proposed to estimate and correct phase errors in SAR images. Some autofocus techniques work as a post-processor on reconstructed images and some are integrated into the image reconstruction algorithms. Compressed Sensing (CS), as a relatively new theory, can be applied to sparse SAR image reconstruction especially in detection of strong targets. Autofocus can also be integrated into CS based SAR image reconstruction techniques. However, due to their high computational complexity, CS based techniques are not commonly used in practice. To improve efficiency of image reconstruction we propose a novel CS based SAR imaging technique which utilizes recently proposed Expectation Maximization based Matching Pursuit (EMMP) algorithm. EMMP algorithm is greedy and computationally less complex enabling fast SAR image reconstructions. The proposed EMMP based SAR image reconstruction technique also performs autofocus and image reconstruction simultaneously. Based on a variety of metrics, performance of the proposed EMMP based SAR image reconstruction technique is investigated. The obtained results show that the proposed technique provides high resolution images of sparse target scenes while performing highly accurate motion compensation. (C) 2014 Elsevier Inc. All rights reserved

    Conformal Ricci collineations of static spherically symmetric spacetimes

    Full text link
    Conformal Ricci collineations of static spherically symmetric spacetimes are studied. The general form of the vector fields generating conformal Ricci collineations is found when the Ricci tensor is non-degenerate, in which case the number of independent conformal Ricci collineations is \emph{fifteen}; the maximum number for 4-dimensional manifolds. In the degenerate case it is found that the static spherically symmetric spacetimes always have an infinite number of conformal Ricci collineations. Some examples are provided which admit non-trivial conformal Ricci collineations, and perfect fluid source of the matter

    Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasi-periodic edge of chaos

    Full text link
    We investigate the probability density of rescaled sum of iterates of sine-circle map within quasi-periodic route to chaos. When the dynamical system is strongly mixing (i.e., ergodic), standard Central Limit Theorem (CLT) is expected to be valid, but at the edge of chaos where iterates have strong correlations, the standard CLT is not necessarily to be valid anymore. We discuss here the main characteristics of the central limit behavior of deterministic dynamical systems which exhibit quasi-periodic route to chaos. At the golden-mean onset of chaos for the sine-circle map, we numerically verify that the probability density appears to converge to a q-Gaussian with q<1 as the golden mean value is approached.Comment: 7 pages, 7 figures, 1 tabl

    Affordances in Psychology, Neuroscience, and Robotics: A Survey

    Get PDF
    The concept of affordances appeared in psychology during the late 60s as an alternative perspective on the visual perception of the environment. It was revolutionary in the intuition that the way living beings perceive the world is deeply influenced by the actions they are able to perform. Then, across the last 40 years, it has influenced many applied fields, e.g., design, human-computer interaction, computer vision, and robotics. In this paper, we offer a multidisciplinary perspective on the notion of affordances. We first discuss the main definitions and formalizations of the affordance theory, then we report the most significant evidence in psychology and neuroscience that support it, and finally we review the most relevant applications of this concept in robotics

    Nonadditive entropy and nonextensive statistical mechanics - Some central concepts and recent applications

    Full text link
    We briefly review central concepts concerning nonextensive statistical mechanics, based on the nonadditive entropy Sq=k1ipiqq1(qR;S1=kipilnpi)S_q=k\frac{1-\sum_{i}p_i^q}{q-1} (q \in {\cal R}; S_1=-k\sum_{i}p_i \ln p_i). Among others, we focus on possible realizations of the qq-generalized Central Limit Theorem, including at the edge of chaos of the logistic map, and for quasi-stationary states of many-body long-range-interacting Hamiltonian systems.Comment: 15 pages, 9 figs., to appear in Journal of Physics: Conf.Series (IOP, 2010
    corecore