51 research outputs found

    Membrane-dependent activities of human 15-lox-2 and its murine counterpart implications for murine models of atherosclerosis

    Get PDF
    © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. The enzyme encoded by the ALOX15B gene has been linked to the development of atherosclerotic plaques in humans and in a mouse model of hypercholesterolemia. In vitro, these enzymes, which share 78% sequence identity, generate distinct products from their substrate arachidonic acid: the human enzyme, a 15-S-hydroperoxy product; and the murine enzyme, an 8-S-product. We probed the activities of these enzymes with nanodiscs as membrane mimics to determine whether they can access substrate esterified in a bilayer and characterized their activities at the membrane interface. We observed that both enzymes transform phospholipid-esterified arachidonic acid to a 15-S-product. Moreover, when expressed in transfected HEK cells, both enzymes result in significant increases in the amounts of 15-hydroxyderivatives of eicosanoids detected. In addition, we show that 15-LOX-2 is distributed at the plasma membrane when the HEK293 cells are stimulated by the addition Ca 2+ ionophore and that cellular localization is dependent upon the presence of a putative membrane insertion loop. We also report that sequence differences between the human and mouse enzymes in this loop appear to confer distinct mechanisms of enzyme-membrane interaction for the homologues

    Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content

    Get PDF
    INTRODUCTION: Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. METHODS: Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. RESULTS: MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p < 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. CONCLUSIONS: Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal–fetal transfer of LPC-DHA, which is critical for brain growth

    Sex-specific responses in placental fatty acid oxidation, esterification and transfer capacity to maternal obesity

    No full text
    International audienceFatty acid metabolism and oxidation capacity in the placenta, which likely affects the rate and composition of lipid delivered to the fetus remains poorly understood. Long chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are critical for fetal growth and brain development. We determined the impact of maternal obesity on placental fatty acid oxidation, esterification and transport capacity by measuring PhosphatidylCholine (PC) and LysoPhosphatidylCholine (LPC) containing DHA by mass spectrometry in mother-placenta-baby triads as well as placental free carnitine and acylcarnitine metabolites in women with normal and obese pre-pregnancy BMI. Placental protein expression of enzymes involved in beta-oxidation and esterification pathways, MFSD2a (lysophosphatidylcholine transporter) and OCTN2 (carnitine transporter) expression in syncytiotrophoblast microvillous (MVM) and basal (BM) membranes were determined by Western Blot. Maternal obesity was associated with decreased umbilical cord plasma DHA in LPC and PC fractions in male, but not female, fetuses. Basal membrane MFSD2a protein expression was increased in placenta of males of obese mothers. In female placentas, despite an increased MVM OCTN2 expression, maternal obesity was associated with a reduced MUFA-carnitine levels and increased esterification enzymes. We speculate that lower DHA-PL in fetal circulation of male offspring of obese mothers, despite a significant increase in transporter expression for LPC-DHA, may lead to low DHA needed for brain development contributing to neurological consequences that are more prevalent in male children. Female placentas likely have reduced beta-oxidation capacity and appear to store FA through greater placental esterification, suggesting impaired placenta function and lipid transfer in female placentas of obese mothers

    Fetal sex differences in placental LCPUFA ether and plasmalogen phosphatidylethanolamine and phosphatidylcholine contents in pregnancies complicated by obesity

    No full text
    Abstract Background We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal–fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. Methods In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC–MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini–Hochberg false discovery rate adjustment to account for multiple testing. Results Levels of ester PC containing DHA and ARA were profoundly reduced by 60–92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51–84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43–61% in male, but not female, fetuses of obese mothers. Conclusions We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity

    Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content

    No full text
    Introduction: Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. Methods: Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. Results: MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p &lt; 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. Conclusions: Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal&ndash;fetal transfer of LPC-DHA, which is critical for brain growth

    Cytosolic phospholipase A2 contributes to innate immune defense against Candida albicans lung infection

    No full text
    BACKGROUND: The lung is exposed to airborne fungal spores, and fungi that colonize the oral cavity such as Candida albicans, but does not develop disease to opportunistic fungal pathogens unless the immune system is compromised. The Group IVA cytosolic phospholipase A(2) (cPLA(2)α) is activated in response to Candida albicans infection resulting in the release of arachidonic acid for eicosanoid production. Although eicosanoids such as prostaglandins and leukotrienes modulate inflammation and immune responses, the role of cPLA(2)α and eicosanoids in regulating C. albicans lung infection is not understood. METHODS: The responses of cPLA(2)α(+/+) and cPLA(2)α(−/−) Balb/c mice to intratracheal instillation of C. albicans were compared. After challenge, we evaluated weight loss, organ fungal burden, and the recruitment of cells and the levels of cytokines and eicosanoids in bronchoalveolar lavage fluid. The ability of macrophages and neutrophils from cPLA(2)α(+/+) and cPLA(2)α(−/−) mice to recognize and kill C. albicans was also compared. RESULTS: After C. albicans instillation, cPLA(2)α(+/+) mice recovered a modest weight loss by 48 h and completely cleared fungi from the lung by 12 h with no dissemination to the kidneys. In cPLA(2)α(−/−) mice, weight loss continued for 72 h, C. albicans was not completely cleared from the lung and disseminated to the kidneys. cPLA(2)α(−/−) mice exhibited greater signs of inflammation including higher neutrophil influx, and elevated levels of albumin and pro-inflammatory cytokines/chemokines (IL1α, IL1β, TNFα, IL6, CSF2, CXCL1, CCL20) in bronchoalveolar lavage fluid. The amounts of cysteinyl leukotrienes, thromboxane B(2) and prostaglandin E(2) were significantly lower in bronchoalveolar lavage fluid from C. albicans-infected cPLA(2)α(−/−) mice compared to cPLA(2)α(+/+) mice. Alveolar macrophages and neutrophils from uninfected cPLA(2)α(−/−) mice exhibited less killing of C. albicans in vitro than cells from cPLA(2)α(+/+) mice. In addition alveolar macrophages from cPLA(2)α(−/−) mice isolated 6 h after instillation of GFP-C. albicans contained fewer internalized fungi than cPLA(2)α(+/+) macrophages. CONCLUSIONS: The results demonstrate that cPLA(2)α contributes to immune surveillance and host defense in the lung to prevent infection by the commensal fungus C. albicans and to dampen inflammation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12865-016-0165-9) contains supplementary material, which is available to authorized users
    corecore