232 research outputs found

    Strong-field dipole resonance. I. Limiting analytical cases

    Full text link
    We investigate population dynamics in N-level systems driven beyond the linear regime by a strong external field, which couples to the system through an operator with nonzero diagonal elements. As concrete example we consider the case of dipolar molecular systems. We identify limiting cases of the Hamiltonian leading to wavefunctions that can be written in terms of ordinary exponentials, and focus on the limits of slowly and rapidly varying fields of arbitrary strength. For rapidly varying fields we prove for arbitrary NN that the population dynamics is independent of the sign of the projection of the field onto the dipole coupling. In the opposite limit of slowly varying fields the population of the target level is optimized by a dipole resonance condition. As a result population transfer is maximized for one sign of the field and suppressed for the other one, so that a switch based on flopping the field polarization can be devised. For significant sign dependence the resonance linewidth with respect to the field strength is small. In the intermediate regime of moderate field variation, the integral of lowest order in the coupling can be rewritten as a sum of terms resembling the two limiting cases, plus correction terms for N>2, so that a less pronounced sign-dependence still exists.Comment: 34 pages, 1 figur

    A systematic study of non-ideal contacts in integer quantum Hall systems

    Full text link
    In the present article we investigate the influence of the contact region on the distribution of the chemical potential in integer quantum Hall samples, as well as the longitudinal and Hall resistance as a function of the magnetic field. First we use a standard quantum Hall sample geometry and analyse the influence of the length of the leads where current enters/leaves the sample and the ratio of the contact width to the width of these leads. Furthermore we investigate potential barriers in the current injecting leads and the measurement arms in order to simulate non-ideal contacts. Second we simulate nonlocal quantum Hall samples with applied gating voltage at the metallic contacts. For such samples it has been found experimentally that both the longitudinal and Hall resistance as a function of the magnetic field can change significantly. Using the nonequilibrium network model we are able to reproduce most qualitative features of the experiments.Comment: 29 pages, 16 Figure

    Theory for the reduction of products of spin operators

    Full text link
    In this study we show that the sum of the powers of arbitrary products of quantum spin operators such as (S+)l(S)m(Sz)n(S^+)^l(S^-)^m(S^z)^n can be reduced by one unit, if this sum is equal to 2S+1, S being the spin quantum number. We emphasize that by a repeated application of this procedure \em all \em arbitrary spin operator products with a sum of powers larger than 2S can be replaced by a combination of spin operators with a maximum sum of powers not larger than 2S. This transformation is exact. All spin operators must belong to the same lattice site. By use of this procedure the consideration of single-ion anisotropies and the investigation of the magnetic reorientation within a Green's function theory are facilitated. Furthermore, it may be useful for the study of time dependent magnetic properties within the ultrashort (fsec) time domain.Comment: 11 pages, 1 table, uses rotatin

    The role of symmetry on interface states in magnetic tunnel junctions

    Full text link
    When an electron tunnels from a metal into the barrier in a magnetic tunnel junction it has to cross the interface. Deep in the metal the eigenstates for the electron can be labelled by the point symmetry group of the bulk but around the interface this symmetry is reduced and one has to use linear combinations of the bulk states to form the eigenstates labelled by the irreducible representations of the point symmetry group of the interface. In this way there can be states localized at the interface which control tunneling. The conclusions as to which are the dominant tunneling states are different from that conventionally found.Comment: 14 pages, 5 figures, accepted in PRB, v2: reference 3 complete

    Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory

    Get PDF
    Molecular absorption and photo-electron spectra can be efficiently predicted with real-time time-dependent density-functional theory (TDDFT). We show here how these techniques can be easily extended to study time-resolved pump-probe experiments in which a system response (absorption or electron emission) to a probe pulse, is measured in an excited state. This simulation tool helps to interpret the fast evolving attosecond time-resolved spectroscopic experiments, where the electronic motion must be followed at its natural time-scale. We show how the extra degrees of freedom (pump pulse duration, intensity, frequency, and time-delay), which are absent in a conventional steady state experiment, provide additional information about electronic structure and dynamics that improve a system characterization. As an extension of this approach, time-dependent 2D spectroscopies can also be simulated, in principle, for large-scale structures and extended systems.Comment: to appear on Chem. Phys. Che

    Infrared Laser Driven Double Proton Transfer. An Optimal Control Theory Study

    Full text link
    Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.Comment: 9 figure

    Fully relativistic calculation of magnetic properties of Fe, Co and Ni adclusters on Ag(100)

    Full text link
    We present first principles calculations of the magnetic moments and magnetic anisotropy energies of small Fe, Co and Ni clusters on top of a Ag(100) surface as well as the exchange-coupling energy between two single adatoms of Fe or Co on Ag(100). The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method. The magnetic anisotropy and the exchange-coupling energies are calculated by means of the force theorem. In the case of adatoms and dimers of iron and cobalt we obtain enhanced spin moments and, especially, unusually large orbital moments, while for nickel our calculations predict a complete absence of magnetism. For larger clusters, the magnitudes of the local moments of the atoms in the center of the cluster are very close to those calculated for the corresponding monolayers. Similar to the orbital moments, the contributions of the individual atoms to the magnetic anisotropy energy strongly depend on the position, hence, on the local environment of a particular atom within a given cluster. We find strong ferromagnetic coupling between two neighboring Fe or Co atoms and a rapid, oscillatory decay of the exchange-coupling energy with increasing distance between these two adatoms.Comment: 8 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Attosecond imaging of molecular electronic wavepackets

    Get PDF
    International audienceA strong laser field may tunnel ionize a molecule from several orbitals simultaneously, forming an attosecond electron–hole wavepacket. Both temporal and spatial information on this wavepacket can be obtained through the coherent soft X-ray emission resulting from the laser-driven recollision of the liberated electron with the core. By characterizing the emission from aligned N 2 molecules, we demonstrate the attosecond contributions of the two highest occupied molecular orbitals. We determine conditions where they are disentangled in the real and imaginary parts of the emission dipole moment. This allows us to carry out a tomographic reconstruction of both orbitals with angstrom spatial resolution. Their coherent superposition provides experimental images of the attosecond wavepacket created in the ionization process. Our results open the prospect of imaging ultrafast intramolecular dynamics combining attosecond and angstrom resolutions

    Quantum kinetic approach to time-resolved photoionization of atoms

    Full text link
    Theoretical approaches to the photoionization of few-electron atoms are discussed. These include nonequilibrium Greens functions and wave function based approaches. In particular, the Multiconfiguration Time-Dependent Hartree-Fock method is discussed and applied to a model one-dimensional atom with four electrons. We compute ground state energies and the time-dependent photoionization by the field a strong laser pulse with two different frequencies in the ultraviolet.Comment: Submitted to Contrib. Plasma Phy
    corecore