7,868 research outputs found
Photoelectron spectra of anionic sodium clusters from time-dependent density-functional theory in real-time
We calculate the excitation energies of small neutral sodium clusters in the
framework of time-dependent density-functional theory. In the presented
calculations, we extract these energies from the power spectra of the dipole
and quadrupole signals that result from a real-time and real-space propagation.
For comparison with measured photoelectron spectra, we use the ionic
configurations of the corresponding single-charged anions. Our calculations
clearly improve on earlier results for photoelectron spectra obtained from
static Kohn-Sham eigenvalues
Time-dependent Kohn-Sham theory with memory
In time-dependent density-functional theory, exchange and correlation (xc)
beyond the adiabatic local density approximation can be described in terms of
viscoelastic stresses in the electron liquid. In the time domain, this leads to
a velocity-dependent xc vector potential with a memory containing short- and
long-range components. The resulting time-dependent Kohn-Sham formalism
describes the dynamics of electronic systems including decoherence and
relaxation. For the example of collective charge-density oscillations in a
quantum well, we illustrate the xc memory effects, clarify the dissipation
mechanism, and extract intersubband relaxation rates for weak and strong
excitations.Comment: 4 pages, 4 figure
Non-adiabatic electron dynamics in time-dependent density-functional theory
Time-dependent density-functional theory (TDDFT) treats dynamical exchange
and correlation (xc) via a single-particle potential, Vxc(r,t), defined as a
nonlocal functional of the density n(r',t'). The popular adiabatic
local-density approximation (ALDA) for Vxc(r,t) uses only densities at the same
space-time point (r,t). To go beyond the ALDA, two local approximations have
been proposed based on quantum hydrodynamics and elasticity theory: (a) using
the current as basic variable (C-TDDFT) [G. Vignale, C. A. Ullrich, and S.
Conti, Phys. Rev. Lett. 79, 4878 (1997)], (b) working in a co-moving Lagrangian
reference frame (L-TDDFT) [I. V. Tokatly, Phys. Rev. B 71, 165105 (2005)]. This
paper illustrates, compares, and analyzes both non-adiabatic theories for
simple time-dependent model densities in the linear and nonlinear regime, for a
broad range of time and frequency scales. C- and L-TDDFT are identical in
certain limits, but in general exhibit qualitative and quantitative differences
in their respective treatment of elastic and dissipative electron dynamics. In
situations where the electronic density rapidly undergoes large deformations,
it is found that non-adiabatic effects can become significant, causing the ALDA
to break down.Comment: 15 pages, 15 figure
Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry
In semiconductor heterostructures, bulk and structural inversion asymmetry
and spin-orbit coupling induce a k-dependent spin splitting of valence and
conduction subbands, which can be viewed as being caused by momentum-dependent
crystal magnetic fields. This paper studies the influence of these effective
magnetic fields on the intersubband spin dynamics in an asymmetric n-type
GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin
plasmons using linear response theory. The so-called D'yakonov-Perel'
decoherence mechanism is inactive for collective intersubband excitations,
i.e., crystal magnetic fields do not lead to decoherence of spin plasmons.
Instead, we predict that the main signature of bulk and structural inversion
asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting
of the spin plasmon dispersion. The importance of many-body effects is pointed
out, and conditions for experimental observation with inelastic light
scattering are discussed.Comment: 8 pages, 6 figure
Degenerate ground states and nonunique potentials: breakdown and restoration of density functionals
The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of
quantum mechanics, and constitutes the basis for the very successful
density-functional approach to inhomogeneous interacting many-particle systems.
Here we show that in formulations of density-functional theory (DFT) that
employ more than one density variable, applied to systems with a degenerate
ground state, there is a subtle loophole in the HK theorem, as all mappings
between densities, wave functions and potentials can break down. Two weaker
theorems which we prove here, the joint-degeneracy theorem and the
internal-energy theorem, restore the internal, total and exchange-correlation
energy functionals to the extent needed in applications of DFT to atomic,
molecular and solid-state physics and quantum chemistry. The joint-degeneracy
theorem constrains the nature of possible degeneracies in general many-body
systems
Semiclassical model for calculating fully differential ionization cross sections of the H molecule
Fully differential cross sections are calculated for the ionization of H
by fast charged projectiles using a semiclassical model developed previously
for the ionization of atoms. The method is tested in case of 4 keV electron and
6 MeV proton projectiles. The obtained results show good agreement with the
available experimental data. Interference effects due to the two-center
character of the target are also observed and analyzed.Comment: 11 pages, 4 figure
Violation of the `Zero-Force Theorem' in the time-dependent Krieger-Li-Iafrate approximation
We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in
combination with the exchange-only functional violates the `Zero-Force
Theorem'. By analyzing the time-dependent dipole moment of Na5 and Na9+, we
furthermore show that this can lead to an unphysical self-excitation of the
system depending on the system properties and the excitation strength.
Analytical aspects, especially the connection between the `Zero-Force Theorem'
and the `Generalized-Translation Invariance' of the potential, are discussed.Comment: 5 pages, 4 figure
Recurrent atypical fibroxanthoma of the limbus
Author version made available in accordance with the publisher's policy.We report an unusual presentation of recurrent atypical fibroxanthoma of the limbus. Clinical and histological appearance, as well as management are discussed and the current literature is reviewed
- …
