395 research outputs found

    Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters

    Get PDF
    Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6-family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46-expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross-linking and enzyme-linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose-dependent increase in DC death via caspase-dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection

    Prevalence and phase variable expression status of two autotransporters, NalP and MspA, in carriage and disease isolates of Neisseria meningitidis.

    Get PDF
    Neisseria meningitidis is a human nasopharyngeal commensal capable of causing life-threatening septicemia and meningitis. Many meningococcal surface structures, including the autotransporter proteins NalP and MspA, are subject to phase variation (PV) due to the presence of homopolymeric tracts within their coding sequences. The functions of MspA are unknown. NalP proteolytically cleaves several surface-located virulence factors including the 4CMenB antigen NhbA. Therefore, NalP is a phase-variable regulator of the meningococcal outer membrane and secretome whose expression may reduce isolate susceptibility to 4CMenB-induced immune responses. To improve our understanding of the contributions of MspA and NalP to meningococcal-host interactions, their distribution and phase-variable expression status was studied in epidemiologically relevant samples, including 127 carriage and 514 invasive isolates representative of multiple clonal complexes and serogroups. Prevalence estimates of >98% and >88% were obtained for mspA and nalP, respectively, with no significant differences in their frequencies in disease versus carriage isolates. 16% of serogroup B (MenB) invasive isolates, predominately from clonal complexes ST-269 and ST-461, lacked nalP. Deletion of nalP often resulted from recombination events between flanking repetitive elements. PolyC tract lengths ranged from 6-15 bp in nalP and 6-14 bp in mspA. In an examination of PV status, 58.8% of carriage, and 40.1% of invasive nalP-positive MenB isolates were nalP phase ON. The frequency of this phenotype was not significantly different in serogroup Y (MenY) carriage strains, but was significantly higher in invasive MenY strains (86.3%; p<0.0001). Approximately 90% of MenB carriage and invasive isolates were mspA phase ON; significantly more than MenY carriage (32.7%) or invasive (13.7%) isolates. This differential expression resulted from different mode mspA tract lengths between the serogroups. Our data indicates a differential requirement for NalP and MspA expression in MenB and MenY strains and is a step towards understanding the contributions of phase-variable loci to meningococcal biology

    Relações Públicas: novos desafios

    Get PDF
    Resenha do Livro: Práticas acadêmicas em relações públicas:processos, pesquisas e aplicações Autores: Cláudia Peixoto de Moura; Nelson Costa Fossatti (Org.)Resenha do Livro: Práticas acadêmicas em relações públicas:processos, pesquisas e aplicações Autores: Cláudia Peixoto de Moura; Nelson Costa Fossatti (Org.

    Stress-Based Screening for Compounds That Inhibit β-Barrel Outer Membrane Protein Assembly in Gram-Negative Bacteria

    Get PDF
    Biogenesis of the outer membrane (OM) of Gram-negative bacteria involves two processes essential for growth, that is, the insertion of β-barrel outer membrane proteins (OMPs) by the Bam complex and the assembly of the LPS-containing outer leaflet of the OM by the LptD/E complex from the Lpt pathway. These processes have only recently gained attention as targets for antimicrobial drugs. Our laboratory has developed a simple screening tool to identify compounds that target processes that disrupt the biogenesis of the cell envelope, among which the activity of the Bam complex. The tool is based on the observation that such a disruption triggers cell envelope stress response systems, such as the σE, Rcs, and Cpx responses. In essence, specific stress-responsive promoters are fused to a gene encoding a bright fluorescent protein to serve as a panel of easy-to-monitor stress reporter plasmids. Using these plasmids, compounds triggering these stress systems and, therefore, putatively disrupting the biogenesis of the cell envelope can be identified by the nature and kinetics of the induced stress responses. We describe here the use of the stress reporter plasmids in high-throughput phenotypic screening using multi-well plates.</p

    Diagnostic aspects of infections with Chlamydia trachomatis, Neisseria gonorrhoeae and herpes simplex virus

    Get PDF
    The sexually transmitted diseases (STOs) constitute a worldwide problem of major significance in terms of health. economic and social consequences. The most important STOs are Ihe bacterial infections syphilis (causative agent Treponema pal/idum sub·species pallidum), gonorrhoea (causative agent Neisseria gonorrllOeae, N. gOllorrhoeae), infections caused by Chlamydia trachomatis (C. trachomatis) and the viral infections herpes genitalis (causative agent herpes simplex virus, HSV), condylomata acuminata (causative agent human papilloma virus, HPV) and human immunodeficiency virus infections including AIDS. In addition, donovanosis (causative agent Calymmatobacterium grallulomatis) and chancroid (causative agent Haemophilus ducrep) are important in the developing countries. The combat against STOs is aimed at disrupting the infectious cascade. Attempts have been made to achieve this via education (for instance: safe sex campaigns), contact tracing, the screening of high-risk groups and treatment of patients. It was expected that this would decrease the spread of STOs in the community and prevent the development of complications and sequela in the individual patient.

    Social responsibility in building a fair and sustainable country

    Get PDF

    Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    Get PDF
    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle

    Management and valorisation of wastes through use in producing alkali-activated cement materials

    Get PDF
    There is a growing global interest in maximising the re-use and recycling of waste, to minimise the environmental impacts associated with waste treatment and disposal. Use of high-volume wastes in the production of blended or novel cements (including alkali-activated cements) is well known as a key pathway by which these wastes can be re-used. This paper presents a critical overview of the urban, agricultural, mining and industrial wastes that have been identified as potential precursors for the production of alkali-activated cement materials, or that can be effectively stabilised/solidified via alkali activation, to assure their safe disposal. The central aim of this review is to elucidate the potential advantages and pitfalls associated with the application of alkali-activation technology to a wide variety of wastes that have been claimed to be suitable for the production of construction materials. A brief overview of the generation and characteristics of each waste is reported, accompanied by identification of opportunities for the use of alkali-activation technology for their valorisation and/or management

    Stapling of Peptides Potentiates the Antibiotic Treatment of Acinetobacter baumannii In Vivo

    Get PDF
    The rising incidence of multidrug resistance in Gram-negative bacteria underlines the urgency for novel treatment options. One promising new approach is the synergistic combination of antibiotics with antimicrobial peptides. However, the use of such peptides is not straightforward; they are often sensitive to proteolytic degradation, which greatly limits their clinical potential. One approach to increase stability is to apply a hydrocarbon staple to the antimicrobial peptide, thereby fixing them in an α-helical conformation, which renders them less exposed to proteolytic activity. In this work we applied several different hydrocarbon staples to two previously described peptides shown to act on the outer membrane, L6 and L8, and tested their activity in a zebrafish embryo infection model using a clinical isolate of Acinetobacter baumannii as a pathogen. We show that the introduction of such a hydrocarbon staple to the peptide L8 improves its in vivo potentiating activity on antibiotic treatment, without increasing its in vivo antimicrobial activity, toxicity or hemolytic activity
    corecore