16,058,658 research outputs found

    Open Access/Open Research/Open Government: The Full Cycle of Access to Government Information

    Get PDF
    Stephanie Braunstein, Head Government Documents Librarian at Louisiana State University, and Maggie Kauffman, Senior Librarian and Housing Resource Coordinator at the California Department of Housing and Community Development, will describe the who, what, why, and how of current initiatives that promote the sharing of government-funded research--at both the federal and state levels. Emphasis will be placed on recent legislative efforts (such as the Fair Access to Science and Technology Research Act [FASTR]) and on the recommendations of various professional library organizations that support academic research (such as the Association of Research Libraries [ARL]). While much of the current discussion surrounding this issue takes place at the federal level, open access to information at the state level is vital in order to insure an educated and informed local population. After the informational portion of the presentation, the presenters will open up the floor for discussion with the intention of sharing a variety of perspectives on the government\u27s funding of research and how best to provide fair and equitable access to it

    Unconference Session: Ask an Open Lawyer Q&A

    Get PDF

    Neutrino and anti-neutrino energy loss rates due to iron isotopes suitable for core-collapse simulations

    Full text link
    Accurate estimate of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for cooling of neutron stars and white dwarfs. The energy spectra of neutrinos and antineutrinos arriving at the Earth can also provide useful information on the primary neutrino fluxes as well as neutrino mixing scenario (it is to be noted that these supernova neutrinos are emitted after the supernova explosion which is a much later stage of stellar evolution than that considered in this paper). Recently an improved microscopic calculation of weak-interaction mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. Here I present for the first time the fine-grid calculation of the neutrino and anti-neutrino energy loss rates due to 54,55,56^{54,55,56}Fe in stellar matter. In the core of massive stars isotopes of iron, 54,55,56^{54,55,56}Fe, are considered to be key players in decreasing the electron-to-baryon ratio (YeY_{e}) mainly via electron capture on these nuclide. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes. The calculated cooling rates are also compared with previous calculations.Comment: 12 pages, 3 figures and 1 table. arXiv admin note: text overlap with arXiv:1108.4569, arXiv:1203.4675, arXiv:1203.434
    corecore