5,271 research outputs found
Radiative Transfer Effects in He I Emission Lines
We consider the effect of optical depth of the 2 ^{3}S level on the nebular
recombination spectrum of He I for a spherically symmetric nebula with no
systematic velocity gradients. These calculations, using many improvements in
atomic data, can be used in place of the earlier calculations of Robbins. We
give representative Case B line fluxes for UV, optical, and IR emission lines
over a range of physical conditions: T=5000-20000 K, n_{e}=1-10^{8} cm^{-3},
and tau_{3889}=0-100. A FORTRAN program for calculating emissivities for all
lines arising from quantum levels with n < 11 is also available from the
authors.
We present a special set of fitting formulae for the physical conditions
relevant to low metallicity extragalactic H II regions: T=12,000-20,000 K,
n_{e}=1-300 cm^{-3}, and tau_{3889} < 2.0. For this range of physical
conditions, the Case B line fluxes of the bright optical lines 4471 A, 5876 A,
and 6678 A, are changed less than 1%, in agreement with previous studies.
However, the 7065 A corrections are much smaller than those calculated by
Izotov & Thuan based on the earlier calculations by Robbins. This means that
the 7065 A line is a better density diagnostic than previously thought. Two
corrections to the fitting functions calculated in our previous work are also
given.Comment: To be published in 10 April 2002 ApJ; relevant code available at
ftp://wisp.physics.wisc.edu/pub/benjamin/Heliu
A novel type of proximity focusing RICH counter with multiple refractive index aerogel radiator
A proximity focusing ring imaging Cherenkov detector, with the radiator
consisting of two or more aerogel layers of different refractive indices, has
been tested in 1-4 GeV/c pion beams at KEK. Essentially, a multiple refractive
index aerogel radiator allows for an increase in Cherenkov photon yield on
account of the increase in overall radiator thickness, while avoiding the
simultaneous degradation in single photon angular resolution associated with
the increased uncertainty of the emission point. With the refractive index of
consecutive layers suitably increasing in the downstream direction, one may
achieve overlapping of the Cherenkov rings from a single charged particle. In
the opposite case of decreasing refractive index, one may obtain well separated
rings. In the former combination an approximately 40% increase in photon yield
is accompanied with just a minor degradation in single photon angular
resolution. The impact of this improvement on the pion/kaon separation at the
upgraded Belle detector is discussed.Comment: submitted to Nucl. Instr. Meth.
Refinement Type Inference via Horn Constraint Optimization
We propose a novel method for inferring refinement types of higher-order
functional programs. The main advantage of the proposed method is that it can
infer maximally preferred (i.e., Pareto optimal) refinement types with respect
to a user-specified preference order. The flexible optimization of refinement
types enabled by the proposed method paves the way for interesting
applications, such as inferring most-general characterization of inputs for
which a given program satisfies (or violates) a given safety (or termination)
property. Our method reduces such a type optimization problem to a Horn
constraint optimization problem by using a new refinement type system that can
flexibly reason about non-determinism in programs. Our method then solves the
constraint optimization problem by repeatedly improving a current solution
until convergence via template-based invariant generation. We have implemented
a prototype inference system based on our method, and obtained promising
results in preliminary experiments.Comment: 19 page
Performance of p-bulk microstrip sensors under 60Co γ irradiation at rates expected at the HL-LHC
We are developing p-bulk microstrip sensors for the high luminosity upgrade of the LHC accelerator, HL-LHC. The stability of FZ (float zone) wafers available to Hamamatsu Photonics was examined by irradiating them at rates expected at the HL-LHC. They show degradation in the operational voltage at low dose but recover after the dose is accumulated. The instability is dependent on the bias voltage and dose rate, and also on the irradiation history. We have characterized the instability and attributed the cause to the charge concentration at the electrode edge. The strip isolation, which is degraded while in irradiation, is shown not to induce any practical problem for the operation
A Possibility of large electro-weak penguin contribution in B -> K pi modes
We discuss about a possibility of large electro-weak penguin contribution in
B -> K pi from recent experimental data. The several relations among the
branching ratios which realize when the contributions from tree type and
electro-weak penguin are small compared with the gluon penguin and can be
treated as the expansion parameters do not satisfy the data. The difference
comes from the r^2 terms which is the square of the ratio with the gluon
penguin and the main contribution comes from electro-weak penguin. We find that
the contribution from electro-weak penguin may be large to explain the
experimental data. If the magnitude estimated from experiment is quite large
compared with the theoretical estimation, then it may be including some new
physics effects.Comment: 11 pages, 1 figure, Typos correcte
Theoretical models for classical Cepheids. VIII. Effects of helium and heavy elements abundance on the Cepheid distance scale
Previous nonlinear fundamental pulsation models for classical Cepheids with
metal content Z <= 0.02 are implemented with new computations at super-solar
metallicity (Z=0.03, 0.04) and selected choices of the helium-to-metal
enrichment ratio DeltaY/Delta Z. On this basis, we show that the location into
the HR diagram of the Cepheid instability strip is dependent on both metal and
helium abundance, moving towards higher effective temperatures with decreasing
the metal content (at fixed Y) or with increasing the helium content (at fixed
Z). The contributions of helium and metals to the predicted Period-Luminosity
and Period-Luminosity-Color relations are discussed, as well as the
implications on the Cepheid distance scale. Based on these new results, we
finally show that the empirical metallicity correction suggested by Cepheid
observations in two fields of the galaxy M101 may be accounted for, provided
that the adopted helium-to-metal enrichment ratio is reasonably high (Delta
Y/Delta Z ~ 3.5).Comment: 23 pages, including 6 postscript figures, accepted for publication on
Ap
Measurement of tau polarization in e+ e- annihilation at sqrt{s}=58 GeV
The polarization of tau leptons in the reaction e+ e- --> tau+ tau- has been
measured using a e+e- collider, TRISTAN, at the center-of-mass energy of 58
GeV. From the kinematical distributions of daughter particles in tau --> e nu
nu-bar, mu nu nu-bar, rho nu or pi(K) nu decays, the average polarization of
tau- and its forward-backward asymmetry have been evaluated to be 0.012 +-
0.058 and 0.029 +- 0.057, respectively.Comment: 18 pages, 5 figure
Rare decays and CP violation at B-factories
Recent results on rare B decays from the two B-factories, Belle and BABAR, are presented. The Wilson Coefficients in B → K(∗)l+l− and polarization puzzle in charmless B → V V decays are addressed
- …
