710 research outputs found
Sequential Adaptive Detection for In-Situ Transmission Electron Microscopy (TEM)
We develop new efficient online algorithms for detecting transient sparse
signals in TEM video sequences, by adopting the recently developed framework
for sequential detection jointly with online convex optimization [1]. We cast
the problem as detecting an unknown sparse mean shift of Gaussian observations,
and develop adaptive CUSUM and adaptive SSRS procedures, which are based on
likelihood ratio statistics with post-change mean vector being online maximum
likelihood estimators with . We demonstrate the meritorious performance
of our algorithms for TEM imaging using real data
A fundamental investigation of process efficiencies in the Laser Engineered Net Shaping (LENS) solid freeform fabrication process
The effect of environment and superalloy composition on TBC lifetime
While the water vapor content of the combustion gas in natural gas-fired land based turbines is ~10%, it can be 20-85% with coal-derived (syngas or H2) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO2 contents to facilitate carbon capture and sequestration. Also, for land-based, power-generation turbines, there is industry interest in reducing alloy costs by decreasing the superalloy Re content, either by developing new alloys or employing earlier generation superalloys. To investigate the effects of these variables on thermal barrier coating (TBC) lifetime, furnace cycling tests (1h cycles) were performed in air with 10, 50 and 90 vol.% water vapor, O2-50%H2O and CO2-10%H2O and compared to prior results in dry air or O2. Two types of TBC’s were investigated: (1) diffusion bond coatings (Pt diffusion or simple or Pt-modified aluminide) with commercially vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 (1.5%Re) substrates and (2) high velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air-plasma sprayed YSZ top coatings on superalloy X4, 1483 and 247 substrates. For both types of coatings, a 20-50% decrease in coating lifetime was observed with the addition of water vapor for all but the Pt diffusion coatings which were unaffected by the environment. However, the higher water vapor contents in air did not further decrease the coating lifetime. Initial results for similar diffusion bond coatings in CO2-10%H2O also did not show a decrease in lifetime due to the addition of CO2. Characterization of the failed coating microstructures showed only minor effects of water vapor and CO2 additions that do not appear to account for the changes in lifetimes observed. Reductions in TBC lifetime were observed for 1483 substrates (compared to X4), which were attributed to the lower Al content and possible the higher Ti content. The higher Hf content in N515 (compared to N5) likely explains the higher TBC lifetimes observed for this substrate. More recent work with 247 substrates is in progress as well as furnace testing with 100h cycles to better simulate the base load duty cycle. Future work also is planned to investigate the role of SO2 on TBC lifetime as increased water vapor contents in the exhaust do not explain the current 50°-100°C de-rating of syngas-fired turbines
Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy
Different cooling paths from a supersolvus temperature have been applied to FGH96, a polycrystalline nickel base superalloy for turbine disc applications, in order to simulate the different microstructures that exist through the thickness of a disc following an industrial heat treatment. Secondary and tertiary γ′ precipitate size distributions and morphology have been analysed and compared for the different heat treatments using SEM and atom probe tomography (APT). Detailed compositional data for both γ′ precipitate and γ matrix are presented, and compared to equilibrium compositions calculated by Thermo-Calc. For the heat-treatments studied, the secondary γ′ composition indicates a shell of differing composition to that towards the precipitate core. From sequential equilibria compositional calculations, it is suggested that the ‘shell’ forms at a lower temperature than the precipitate core. The fine tertiary precipitates do not show the core-shell compositional differences on continuous cooling. W peaks are noted at the γ/γ′ interfacial region, which is of significance for retarding coarsening. A γ′ depletion zone surrounds the secondary precipitates, within which the γ matrix composition differs significantly to the γ far-field values, Finally, a precipitate nucleation and growth mechanistic model is suggested based on the experimental data and Thermo-Calc calculations
Multilayer Lateral Heterostructures of Van Der Waals Crystals with Sharp, Carrier–Transparent Interfaces
Research on engineered materials that integrate different 2D crystals has largely focused on two prototypical heterostructures: Vertical van der Waals stacks and lateral heterostructures of covalently stitched monolayers. Extending lateral integration to few layer or even multilayer van der Waals crystals could enable architectures that combine the superior light absorption and photonic properties of thicker crystals with close proximity to interfaces and efficient carrier separation within the layers, potentially benefiting applications such as photovoltaics. Here, the realization of multilayer heterstructures of the van der Waals semiconductors SnS and GeS with lateral interfaces spanning up to several hundred individual layers is demonstrated. Structural and chemical imaging identifies {110} interfaces that are perpendicular to the (001) layer plane and are laterally localized and sharp on a 10 nm scale across the entire thickness. Cathodoluminescence spectroscopy provides evidence for a facile transfer of electron-hole pairs across the lateral interfaces, indicating covalent stitching with high electronic quality and a low density of recombination centers
Stacking Fault Induced Symmetry Breaking in van der Waals Nanowires
AbstractWhile traditional ferroelectrics are based on polar crystals in bulk or thin film form, two-dimensional and layered materials can support mechanisms for symmetry breaking between centrosymmetric building blocks, e.g., by creating low-symmetry interfaces in van der Waals stacks. Here, we introduce an approach toward symmetry breaking in van der Waals crystals that relies on the spontaneous incorporation of stacking faults in a nonpolar bulk layer sequence. The concept is realized in nanowires consisting of Se-rich group IV monochalcogenide (GeSe1–xSₓ) alloys, obtained by vapor–liquid–solid growth. The single crystalline wires adopt a layered structure in which the nonpolar A-B bulk stacking along the nanowire axis is interrupted by single-layer stacking faults with local A-A′ stacking. Density functional theory explains this behavior by a reduced stacking fault formation energy in GeSe (or Se-rich GeSe1–xSₓ alloys). Computations demonstrate that, similar to monochalcogenide monolayers, the inserted A-layers should show a spontaneous electric polarization with a switching barrier consistent with a Curie temperature above room temperature. Second-harmonic generation signals are consistent with a variable density of stacking faults along the wires. Our results point to possible routes for designing ferroelectrics via the layer stacking in van der Waals crystals.Abstract
While traditional ferroelectrics are based on polar crystals in bulk or thin film form, two-dimensional and layered materials can support mechanisms for symmetry breaking between centrosymmetric building blocks, e.g., by creating low-symmetry interfaces in van der Waals stacks. Here, we introduce an approach toward symmetry breaking in van der Waals crystals that relies on the spontaneous incorporation of stacking faults in a nonpolar bulk layer sequence. The concept is realized in nanowires consisting of Se-rich group IV monochalcogenide (GeSe1–xSₓ) alloys, obtained by vapor–liquid–solid growth. The single crystalline wires adopt a layered structure in which the nonpolar A-B bulk stacking along the nanowire axis is interrupted by single-layer stacking faults with local A-A′ stacking. Density functional theory explains this behavior by a reduced stacking fault formation energy in GeSe (or Se-rich GeSe1–xSₓ alloys). Computations demonstrate that, similar to monochalcogenide monolayers, the inserted A-layers should show a spontaneous electric polarization with a switching barrier consistent with a Curie temperature above room temperature. Second-harmonic generation signals are consistent with a variable density of stacking faults along the wires. Our results point to possible routes for designing ferroelectrics via the layer stacking in van der Waals crystals
A Microstructural and Kinetic Investigation of the KCl-Induced Corrosion of an FeCrAl Alloy at 600 A degrees C
The corrosion behaviour of a FeCrAl alloy was investigated at 600 A degrees C in O-2 + H2O with solid KCl applied. A kinetics and microstructural investigation showed that KCl accelerates corrosion and that potassium chromate formation depletes the protective scale in Cr, thus triggering the formation of a fast-growing iron-rich scale. Iron oxide was found to grow both inward and outward, on either side of the initial oxide. A chromia layer is formed with time underneath the iron oxide. It was found that although the alloy does not form a continuous pure alumina scale at the investigated temperature, aluminium is, however, always enriched at the oxide/alloy interface
- …
