674 research outputs found

    Supersymmetric Dark Matter

    Get PDF
    There is almost universal agreement among astronomers that most of the mass in the Universe and most of the mass in the Galactic halo is dark. Many lines of reasoning suggest that the dark matter consists of some new, as yet undiscovered, weakly-interacting massive particle (WIMP). There is now a vast experimental effort being surmounted to detect WIMPS in the halo. The most promising techniques involve direct detection in low-background laboratory detectors and indirect detection through observation of energetic neutrinos from annihilation of WIMPs that have accumulated in the Sun and/or the Earth. Of the many WIMP candidates, perhaps the best motivated and certainly the most theoretically developed is the neutralino, the lightest superpartner in many supersymmetric theories. We review the minimal supersymmetric extension of the Standard Model and discuss prospects for detection of neutralino dark matter. We review in detail how to calculate the cosmological abundance of the neutralino and the event rates for both direct- and indirect-detection schemes, and we discuss astrophysical and laboratory constraints on supersymmetric models. We isolate and clarify the uncertainties from particle physics, nuclear physics, and astrophysics that enter at each step in the calculation. We briefly review other related dark-matter candidates and detection techniques.Comment: The complete postscript file is available at ftp://ftp.npac.syr.edu/pub/users/jungman/susyreview/susyreview.ps.Z The TeX source and figures (plain TeX; macros included) are at ftp://ftp.npac.syr.edu/pub/users/jungman/susyreview/susyreview.tar.Z Full paper NOT submitted to lanl archive: table of contents only. To appear in Physics Report

    Microfiber abundance associated with coral tissue varies geographically on the Belize Mesoamerican Barrier Reef System

    Get PDF
    Ocean plastic pollution is a global problem that causes ecosystem degradation. Crucial knowledge gaps exist concerning patterns in microfiber abundance across regions and ecosystems, as well as the role of these pollutants within the environment. Here, we quantified the abundance of microfibers in coral samples collected from the Belize Mesoamerican Barrier Reef System (MBRS) using a polarized light microscope and identified a subsample of these to the polymer level using an Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy microscope. Microfibers were found in all coral samples with rayon being identified as the most common microfiber, comprising 85% of quantified pollutants. We found a greater average abundance of microfibers in coral samples from the Sapodilla Cayes (296 ± SE 89) than in samples from the Drowned Cayes (75 ± SE 14), indicating spatial variation in microfiber abundance within coral tissue along the MBRS. These results demonstrate that corals on the Belize MBRS interact with microfibers and that microfiber abundance on reefs varies spatially due to point sources of pollution and local oceanography. As rayon from clothing typically enters the ocean through wastewater effluent, alterations to waste water infrastructure may prove useful in decreasing rayon pollution in coastal waters

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1636-1647, doi:10.1016/j.dsr2.2008.04.019.We investigated how fecal pellet characteristics change with depth in order to quantify the extent of particle repackaging by mesopelagic zooplankton in two contrasting open-ocean systems. Material from neutrally buoyant sediment traps deployed in the summer of 2004 and 2005 at 150, 300, and 500 m was analyzed from both a mesotrophic (Japanese time-series station K2) and an oligotrophic (Hawaii Ocean Time series-HOT station ALOHA) environment in the Pacific Ocean as part of the VERtical Transport In the Global Ocean (VERTIGO) project. We quantified changes in the flux, size, shape, and color of particles recognizable as zooplankton fecal pellets to determine how these parameters varied with depth and location. Flux of K2 fecal pellet particulate organic carbon (POC) at 150 and 300 m was 4-5 times higher than at ALOHA, and at all depths, fecal pellets were 2-5 times larger at K2, reflective of the disparate zooplankton community structure at the two sites. At K2, the proportion of POC flux that consisted of fecal pellets generally decreased with depth from 20% at 150 m to 5% at 500 m, whereas at ALOHA this proportion increased with depth (and was more variable) from 14% to 35%. This difference in the fecal fraction of POC with increasing depth is hypothesized to be due to differences in the extent of zooplankton-mediated fragmentation (coprohexy) and in zooplankton community structure between the two locations. Both regions provided indications of sinking particle repackaging and zooplankton carnivory in the mesopelagic. At ALOHA this was reflected in a significant increase in the mean flux of larvacean fecal pellets from 150 to 500 m of 3 to 46 μg C m-2 d-1, respectively, and at K2 a large peak in larvacean mean pellet flux at 300 m of 3.1 mg C m-2 d-1. Peaks in red pellets produced by carnivores occurred at 300 m at K2, and a variety of other fecal pellet classes showed significant changes in their distribution with depth. There was also evidence of substantially higher pellet fragmentation at K2 with nearly double the ratio of broken:intact pellets at 150 and 300 m (mean of 67% and 64%, respectively ) than at ALOHA where the proportion of broken pellets remained constant with depth (mean 35%). Variations in zooplankton size and community structure within the mesopelagic zone can thus differentially alter the transfer efficiency of sinking POC.This study was supported by grants from the U.S. National Science Foundation NSF OCE-0324402 (Biological Oceanography) to D.K.S and OCE-0301139 (Chemical Oceanography) to K.O.B

    The GALLEX Project

    Get PDF
    AbstractThe GALLEX collaboration aims at the detection of solar neutrinos in a radiochemical experiment employing 30 tons of Gallium in form of concentrated aqueous Gallium-chloride solution. The detector is primarily sensitive to the otherwise inaccessible pp-neutrinos. Details of the experiment have been repeatedly described before [1-7]. Here we report the present status of implementation in the Laboratori Nazionali del Gran Sasso (Italy). So far, 12.2 tons of Gallium are at hand. The present status of development allows to start the first full scale run at the time when 30 tons of Gallium become available. This date is expected to be January, 1990

    Secretory products from PC-3 and MCF-7 tumor cell lines upregulate osteopontin in MC3T3-E1 cells

    Full text link
    Tumor cells frequently have pronounced effects on the skeleton including bone destruction, bone pain, hypercalcemia, and depletion of bone marrow cells. Despite the serious sequelae associated with skeletal metastasis, the mechanisms by which tumor cells alter bone homeostasis remain largely unknown. In this study, we tested the hypothesis that the disruption of bone homeostasis by tumor cells is due in part to the ability of tumor cells to upregulate osteopontin (OPN) mRNA in osteoblasts. Conditioned media were collected from tumor cells that elicit either osteolytic (MCF-7, PC-3) or osteoblastic responses (LNCaP) in animal models and their effects on OPN gene expression were compared using an osteoblast precursor cell line, MC3T3-E1 cells. Secretory products from osteolytic but not osteoblastic tumor cell lines were demonstrated to upregulate OPN in osteoblasts while inhibiting osteoblast proliferation and differentiation. Signal transduction studies revealed that regulation of OPN was dependent on both protein kinase C (PKC) and the mitogen-activated protein (MAP) kinase cascade. These results suggest that the upregulation of OPN may play a key role in the development of osteolytic lesions. Furthermore, these results suggest that drugs that prevent activation of the MAP kinase pathway may be efficacious in the treatment of osteolytic metastases. J. Cell. Biochem. 78:607–616, 2000. © 2000 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34901/1/10_ftp.pd

    Patterns and Drivers of UV Absorbing Chromophoric Dissolved Organic Matter in the Euphotic Layer of the Open Ocean

    Get PDF
    The global distribution of chromophoric dissolved organic matter (CDOM) in the euphotic layer of the Atlantic, Indian, and Pacific oceans (between 35 N and 40 S) was analyzed by absorption spectroscopy during the Malaspina 2010 circumnavigation. Absorption coefficients at 254 nm (a254) and 325 nm (a325), indices (a254/a365) and spectral slopes (between 275 and 295 nm, S275--295) were calculated from the dissolved fraction of the UV absorption spectra to describe the amount and quality of CDOM. Generalized Additive Models (GAMs) were applied to evaluate the relevance of physical and biogeochemical drivers for the variability of CDOM. Besides the low CDOM values, a first division of our data following the Longhurst’s biogeographic classification showed significant differences in CDOM levels among provinces. The lowest values of a254 and a325 were found in the oligotrophic gyres, particularly in the Indian Ocean, and the highest in the upwelling areas, particularly in the Equatorial Pacific. Opposite distributions were obtained for S275--295 and a254/a365, indicative of higher photobleaching in the gyres. The GAM analysis also shows that a254/a365 and S275--295 exhibited inverse relationships with solar radiation, indicating that the biological production of CDOM counteracts photodegradation as solar radiation increases. In summary, whereas photobleaching dictates the vertical distribution of CDOM, Chl a explains the CDOM differences among the photic layer of the tropical and subtropical ocean provinces visited during the circumnavigation.This study was funded by the Ingenio-Consolider project Malaspina 2010 Circumnavigation Expedition (MICINN CSD2008-00077). FI and JO were supported by a fellowship from the “Junta para la Ampliación de Estudios” (JAE-preDOC and JAE-postDOC programs 2011, respectively) from the CSIC
    corecore