13 research outputs found

    A survey on knowledge and self-reported formula handling practices of parents and child care workers in Palermo, Italy

    Get PDF
    Powdered infant formula (PIF) is not a sterile product, but this information appears to be poorly diffused among child caregivers. Parents and child care workers may behave in an unsafe manner when handling PIF. Methods: This study involved parents and child care workers in the 24 municipal child care centres of Palermo. Knowledge and self-reported practices about PIF handling were investigated by a structured questionnaire. A Likert scale was used to measure the strength of the respondent's feelings. Association of knowledge and self-reported practices with demographic variables was also evaluated. Results: 42.4% of parents and 71.0% of child care workers filled in the questionnaire. Significant differences were found between parents and child care workers for age and education. 73.2% of parents and 84.4% of child care workers were confident in sterility of PIF. Generally, adherence to safe procedures when reconstituting and handling PIF was more frequently reported by child care workers who, according to the existing legislation, are regularly subjected to a periodic training on food safety principles and practices. Age and education significantly influenced the answers to the questionnaire of both parents and child care workers. Conclusion: The results of the study reveal that parents and child care workers are generally unaware that powdered formulas may contain viable microorganisms. However, child care workers consistently chose safer options than parents when answering the questions about adherence to hygienic practices. At present it seems unfeasible to produce sterile PIF, but the risk of growth of hazardous organisms in formula at the time of administration should be minimized by promoting safer behaviours among caregivers to infants in both institutional settings and home. \ua9 2009 Calamusa et al; licensee BioMed Central Ltd

    Bacteriological and physico-chemical assessment of wastewater in different region of Tunisia: impact on human health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many parts of the world, health problems and diseases have often been caused by discharging untreated or inadequately treated wastewater. In this study, we aimed to control physico-chemical parameters in wastewater samples. Also, microbiological analyses were done to reveal <it>Salmonella </it>strains and each <it>Escherichia coli </it>(<it>E.coli</it>) pathotype.</p> <p>Findings</p> <p>Sixty wastewater samples were collected from fifteen different regions of Tunisia. All physico-chemical parameters (pH, residual free chlorine, total suspended solids, biological oxygen demand, and chemical oxygen demand) were evaluated.</p> <p>For microbiological analyses, samples were filtered to concentrate bacteria. DNA was extracted by boiling and subjected to polymerase chain reaction (PCR) using different pairs of primers.</p> <p>The mean pH values recorded for the sampling point were above the WHO pH tolerance limit. The total suspended solids (TSS) concentrations varied between 240 mg/L and 733 mg/L in entrance points and between 13 mg/L and 76 mg/L in exit points. In entrance points, the studied wastewater has an average COD concentration that varied between 795 mg/mL to 1420 mg/mL. Whereas, BOD concentration of the wastewater ranged between 270 mg/L to 610 mg/L. In exit points, COD concentration varied between 59 mg/L and 141 mg/L, whereas BOD concentration ranged from 15 mg/L to 87 mg/L.</p> <p>The bacteriological control of wastewaters showed that, in entrance points, <it>Escherichia coli </it>(<it>E.coli</it>) was detected at the rate of 76.6%. Three <it>E.coli </it>pathotypes were found: ETEC (53.3%), EAEC (16.6%) and EIEC (6.6%).</p> <p>Concerning the ETEC isolated strains, 8 of 16 (50%) have only the heat-labile toxin gene, 5 of 16 (31.2%) present only the heat-stable toxin gene and 3 of 16 (18.7%) of strains possess both heat-labile toxin gene and heat-stable toxin gene. In exist point, the same pathotypes were found but all detected ETEC strains present only the "est" gene.</p> <p>Concerning <it>Salmonella </it>isolated strains; percentages of 66.6% and 20% were found in entrance and exit points respectively.</p> <p>Conclusions</p> <p>Wastewaters contain a large amount of pathogenic bacteria that present a real impact on human health. Assessment wastewater treatment stations have to consider in account enterobacterial pathogens as potential pathogens that should be correctly controlled.</p

    Biocatalytic asymmetric formation of tetrahydro-β-carbolines

    No full text
    Strictosidine synthase triggers the formation of strictosidine from tryptamine and secologanin, thereby generating a carbon-carbon bond and a new stereogenic center. Strictosidine contains a tetrahydro-ß-carboline moiety - an important N-heterocyclic framework found in a range of natural products and synthetic pharmaceuticals. Stereoselective methods to produce tetrahydro-ß-carboline enantiomers are greatly valued. We report that strictosidine synthase from Ophiorrhiza pumila utilizes a range of simple achiral aldehydes and substituted tryptamines to form highly enantioenriched (ee >98%) tetrahydro-ß-carbolines via a Pictet-Spengler reaction. This is the first example of aldehyde substrate promiscuity in the strictosidine synthase family of enzymes and represents a first step towards developing a general biocatalytic strategy to access chiral tetrahydro-ß-carbolines

    Accuracy and Reproducibility of Patient-Specific Hemodynamic Models of Stented Intracranial Aneurysms: Report on the Virtual Intracranial Stenting Challenge 2011

    No full text
    Validation studies are prerequisites for computational fluid dynamics (CFD) simulations to be accepted as part of clinical decision-making. This paper reports on the 2011 edition of the Virtual Intracranial Stenting Challenge. The challenge aimed to assess the reproducibility with which research groups can simulate the velocity field in an intracranial aneurysm, both untreated and treated with five different configurations of high-porosity stents. Particle imaging velocimetry (PIV) measurements were obtained to validate the untreated velocity field. Six participants, totaling three CFD solvers, were provided with surface meshes of the vascular geometry and the deployed stent geometries, and flow rate boundary conditions for all inlets and outlets. As output, they were invited to submit an abstract to the 8th International Interdisciplinary Cerebrovascular Symposium 2011 (ICS’11), outlining their methods and giving their interpretation of the performance of each stent configuration. After the challenge, all CFD solutions were collected and analyzed. To quantitatively analyze the data, we calculated the root-mean-square error (RMSE) over uniformly distributed nodes on a plane slicing the main flow jet along its axis and normalized it with the maximum velocity on the slice of the untreated case (NRMSE). Good agreement was found between CFD and PIV with a NRMSE of 7.28%. Excellent agreement was found between CFD solutions, both untreated and treated. The maximum difference between any two groups (along a line perpendicular to the main flow jet) was 4.0 mm/s, i.e. 4.1% of the maximum velocity of the untreated case, and the average NRMSE was 0.47% (range 0.28–1.03%). In conclusion, given geometry and flow rates, research groups can accurately simulate the velocity field inside an intracranial aneurysm—as assessed by comparison with in vitro measurements—and find excellent agreement on the hemodynamic effect of different stent configurations.</p

    Mechanistic advances in plant natural product enzymes

    No full text
    The biosynthetic pathways of plantnaturalproducts offer an abundance of knowledge to scientists in many fields. Synthetic chemists can be inspired by the synthetic strategies that nature uses to construct these compounds. Chemical and biological engineers are working to reprogram these biosynthetic pathways to more efficiently produce valuable products. Finally, biochemists and enzymologists are interested in the detailed mechanisms of the complex transformations involved in the construction of these naturalproducts. Study of biosynthetic enzymes and pathways therefore has a wide-ranging impact. In recent years, many plant biosynthetic pathways have been characterized, particularly the pathways that are responsible for alkaloid biosynthesis. Here we highlight recently studied alkaloid biosynthetic enzymes that catalyze production of numerous complex medicinal compounds, as well as the specifier proteins in glucosinosolate biosynthesis, whose structure and mechanism of action are just beginning to be unraveled
    corecore