1,469 research outputs found
Exploring the Structure of Distant Galaxies with Adaptive Optics on the Keck-II Telescope
We report on the first observation of cosmologically distant field galaxies
with an high order Adaptive Optics (AO) system on an 8-10 meter class
telescope. Two galaxies were observed at 1.6 microns at an angular resolution
as high as 50 milliarcsec using the AO system on the Keck-II telescope. Radial
profiles of both objects are consistent with those of local spiral galaxies and
are decomposed into a classic exponential disk and a central bulge. A
star-forming cluster or companion galaxy as well as a compact core are detected
in one of the galaxies at a redshift of 0.37+/-0.05. We discuss possible
explanations for the core including a small bulge, a nuclear starburst, or an
active nucleus. The same galaxy shows a peak disk surface brightness that is
brighter than local disks of comparable size. These observations demonstrate
the power of AO to reveal details of the morphology of distant faint galaxies
and to explore galaxy evolution.Comment: 5 pages, Latex, 3 figures. Accepted for publication in P.A.S.
Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Four Years
We present the results of spectroscopic observations from the ESSENCE
high-redshift supernova (SN) survey during its first four years of operation.
This sample includes spectra of all SNe Ia whose light curves were presented by
Miknaitis et al. (2007) and used in the cosmological analyses of Davis et al.
(2007) and Wood-Vasey et al. (2007). The sample represents 273 hours of
spectroscopic observations with 6.5 - 10-m-class telescopes of objects detected
and selected for spectroscopy by the ESSENCE team. We present 174 spectra of
156 objects. Combining this sample with that of Matheson et al. (2005), we have
a total sample of 329 spectra of 274 objects. From this, we are able to
spectroscopically classify 118 Type Ia SNe. As the survey has matured, the
efficiency of classifying SNe Ia has remained constant while we have observed
both higher-redshift SNe Ia and SNe Ia farther from maximum brightness.
Examining the subsample of SNe Ia with host-galaxy redshifts shows that
redshifts derived from only the SN Ia spectra are consistent with redshifts
found from host-galaxy spectra. Moreover, the phases derived from only the SN
Ia spectra are consistent with those derived from light-curve fits. By
comparing our spectra to local templates, we find that the rate of objects
similar to the overluminous SN 1991T and the underluminous SN 1991bg in our
sample are consistent with that of the local sample. We do note, however, that
we detect no object spectroscopically or photometrically similar to SN 1991bg.
Although systematic effects could reduce the high-redshift rate we expect based
on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less
prevalent at high redshift.Comment: 21 pages, 17 figures, accepted to A
Protein folding rates correlate with heterogeneity of folding mechanism
By observing trends in the folding kinetics of experimental 2-state proteins
at their transition midpoints, and by observing trends in the barrier heights
of numerous simulations of coarse grained, C-alpha model, Go proteins, we show
that folding rates correlate with the degree of heterogeneity in the formation
of native contacts. Statistically significant correlations are observed between
folding rates and measures of heterogeneity inherent in the native topology, as
well as between rates and the variance in the distribution of either
experimentally measured or simulated phi-values.Comment: 11 pages, 3 figures, 1 tabl
Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A Thirteen-Year Study of Spectral Variability in NGC 5548
We present the final installment of an intensive 13-year study of variations
of the optical continuum and broad H-beta emission line in the Seyfert 1 galaxy
NGC 5548. The data base consists of 1530 optical continuum measurements and
1248 H-beta measurements. The H-beta variations follow the continuum variations
closely, with a typical time delay of about 20 days. However, a year-by-year
analysis shows that the magnitude of emission-line time delay is correlated
with the mean continuum flux. We argue that the data are consistent with the
simple model prediction that the size of the broad-line region is proportional
to the square root of the ionizing luminosity. Moreover, the apparently linear
nature of the correlation between the H-beta response time and the nonstellar
optical continuum arises as a consequence of the changing shape of the
continuum as it varies, specifically with the optical (5100 A) continuum
luminosity proportional to the ultraviolet (1350 A) continuum luminosity to the
0.56 power.Comment: 20 pages plus 4 figures. Accepted for publication in The
Astrophysical Journa
Characteristic velocities of stripped-envelope core-collapse supernova cores
The velocity of the inner ejecta of stripped-envelope core-collapse
supernovae (CC-SNe) is studied by means of an analysis of their nebular
spectra. Stripped-envelope CC-SNe are the result of the explosion of bare cores
of massive stars ( M), and their late-time spectra are
typically dominated by a strong [O {\sc i}] 6300, 6363 emission
line produced by the innermost, slow-moving ejecta which are not visible at
earlier times as they are located below the photosphere. A characteristic
velocity of the inner ejecta is obtained for a sample of 56 stripped-envelope
CC-SNe of different spectral types (IIb, Ib, Ic) using direct measurements of
the line width as well as spectral fitting. For most SNe, this value shows a
small scatter around 4500 km s. Observations ( days) of
stripped-envelope CC-SNe have revealed a subclass of very energetic SNe, termed
broad-lined SNe (BL-SNe) or hypernovae, which are characterised by broad
absorption lines in the early-time spectra, indicative of outer ejecta moving
at very high velocity (). SNe identified as BL in the early phase
show large variations of core velocities at late phases, with some having much
higher and some having similar velocities with respect to regular CC-SNe. This
might indicate asphericity of the inner ejecta of BL-SNe, a possibility we
investigate using synthetic three-dimensional nebular spectra.Comment: 14 pages, 10 figures, MNRAS accepte
Helium Emission in the Type Ic SN 1999cq
We present the first unambiguous detection of helium emission lines in
spectra of Type Ic supernovae (SNe Ic). The presence of He I lines, with full
width at half maximum ~ 2000 km/s, and the distinct absence of any other
intermediate-width emission (e.g., Halpha), implies that the ejecta of SN Ic
1999cq are interacting with dense circumstellar material composed of almost
pure helium. This strengthens the argument that the progenitors of SNe Ic are
core-collapse events in stars that have lost both their hydrogen and helium
envelopes, either through a dense wind or mass-transfer to a companion. In this
way, SN 1999cq is similar to supernovae such as SN 1987K and SN 1993J that
helped firmly establish a physical connection between Type Ib and Type II
supernovae. The light curve of SN 1999cq is very fast, with an extremely rapid
rise followed by a quick decline. SN 1999cq is also found to exhibit a high
level of emission at blue wavelengths (< 5500 A), likely resulting from either
an unusually large amount of iron and iron-group element emission or
uncharacteristically low reddening compared with other SNe Ic.Comment: 17 pages (AASTeX V5.0), 4 figures, accepted for publication in the
Astronomical Journa
K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant
Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe)
have been calculated for a range of epochs. With appropriate filter choices,
the combined statistical and systematic K correction dispersion of the full
sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the
calculated K correction allows the Type Ia to be used as a cosmological probe.
We use the K corrections with observations of seven SNe at redshifts 0.3 < z
<0.5 to bound the possible difference between the locally measured Hubble
constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and
psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal,
P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at
http://www-supernova.lbl.gov
Cosmology from Type Ia Supernovae
This presentation reports on first evidence for a
low-mass-density/positive-cosmological-constant universe that will expand
forever, based on observations of a set of 40 high-redshift supernovae. The
experimental strategy, data sets, and analysis techniques are described. More
extensive analyses of these results with some additional methods and data are
presented in the more recent LBNL report #41801 (Perlmutter et al., 1998;
accepted for publication in Ap.J.), astro-ph/9812133 .
This Lawrence Berkeley National Laboratory reprint is a reduction of a poster
presentation from the Cosmology Display Session #85 on 9 January 1998 at the
American Astronomical Society meeting in Washington D.C. It is also available
on the World Wide Web at http://supernova.LBL.gov/ This work has also been
referenced in the literature by the pre-meeting abstract citation: Perlmutter
et al., B.A.A.S., volume 29, page 1351 (1997).Comment: 9 pages, 8 color figs. Presented at Jan '98 AAS Meeting, also cited
as BAAS,29,1351(1997). Archived here in response to requests; see more
extensive analyses in ApJ paper (astro-ph/9812133
Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Four Years
We present the results of spectroscopic observations from the ESSENCE
high-redshift supernova (SN) survey during its first four years of operation.
This sample includes spectra of all SNe Ia whose light curves were presented by
Miknaitis et al. (2007) and used in the cosmological analyses of Davis et al.
(2007) and Wood-Vasey et al. (2007). The sample represents 273 hours of
spectroscopic observations with 6.5 - 10-m-class telescopes of objects detected
and selected for spectroscopy by the ESSENCE team. We present 174 spectra of
156 objects. Combining this sample with that of Matheson et al. (2005), we have
a total sample of 329 spectra of 274 objects. From this, we are able to
spectroscopically classify 118 Type Ia SNe. As the survey has matured, the
efficiency of classifying SNe Ia has remained constant while we have observed
both higher-redshift SNe Ia and SNe Ia farther from maximum brightness.
Examining the subsample of SNe Ia with host-galaxy redshifts shows that
redshifts derived from only the SN Ia spectra are consistent with redshifts
found from host-galaxy spectra. Moreover, the phases derived from only the SN
Ia spectra are consistent with those derived from light-curve fits. By
comparing our spectra to local templates, we find that the rate of objects
similar to the overluminous SN 1991T and the underluminous SN 1991bg in our
sample are consistent with that of the local sample. We do note, however, that
we detect no object spectroscopically or photometrically similar to SN 1991bg.
Although systematic effects could reduce the high-redshift rate we expect based
on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less
prevalent at high redshift.Comment: 21 pages, 17 figures, accepted to A
- …
