1,633 research outputs found
Two-body correlation functions in nuclear matter with condensate
The density, spin and isospin correlation functions in nuclear matter with a
neutron-proton () condensate are calculated to study the possible
signatures of the BEC-BCS crossover in the low-density region. It is shown that
the criterion of the crossover (Phys. Rev. Lett. {\bf 95}, 090402 (2005)),
consisting in the change of the sign of the density correlation function at low
momentum transfer, fails to describe correctly the density-driven BEC-BCS
transition at finite isospin asymmetry or finite temperature. As an unambiguous
signature of the BEC-BCS transition, there can be used the presence (BCS
regime) or absence (BEC regime) of the singularity in the momentum distribution
of the quasiparticle density of states.Comment: Prepared with RevTeX4, 5p., 4 figure
The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter
Nucleon selfenergies and spectral functions are calculated at the saturation
density of symmetric nuclear matter at finite temperatures. In particular, the
behaviour of these quantities at temperatures above and close to the critical
temperature for the superfluid phase transition in nuclear matter is discussed.
It is shown how the singularity in the thermodynamic T-matrix at the critical
temperature for superfluidity (Thouless criterion) reflects in the selfenergy
and correspondingly in the spectral function. The real part of the on-shell
selfenergy (optical potential) shows an anomalous behaviour for momenta near
the Fermi momentum and temperatures close to the critical temperature related
to the pairing singularity in the imaginary part. For comparison the selfenergy
derived from the K-matrix of Brueckner theory is also calculated. It is found,
that there is no pairing singularity in the imaginary part of the selfenergy in
this case, which is due to the neglect of hole-hole scattering in the K-matrix.
From the selfenergy the spectral function and the occupation numbers for finite
temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses
prc.sty, aps.sty, revtex.sty, psfig.sty (last included
Finding and counting vertex-colored subtrees
The problems studied in this article originate from the Graph Motif problem
introduced by Lacroix et al. in the context of biological networks. The problem
is to decide if a vertex-colored graph has a connected subgraph whose colors
equal a given multiset of colors . It is a graph pattern-matching problem
variant, where the structure of the occurrence of the pattern is not of
interest but the only requirement is the connectedness. Using an algebraic
framework recently introduced by Koutis et al., we obtain new FPT algorithms
for Graph Motif and variants, with improved running times. We also obtain
results on the counting versions of this problem, proving that the counting
problem is FPT if M is a set, but becomes W[1]-hard if M is a multiset with two
colors. Finally, we present an experimental evaluation of this approach on real
datasets, showing that its performance compares favorably with existing
software.Comment: Conference version in International Symposium on Mathematical
Foundations of Computer Science (MFCS), Brno : Czech Republic (2010) Journal
Version in Algorithmic
Deuteron life-time in hot and dense nuclear matter near equilibrium
We consider deuteron formation in hot and dense nuclear matter close to
equilibrium and evaluate the life-time of the deuteron fluctuations within the
linear response theory. To this end we derive a generalized linear Boltzmann
equation where the collision integral is related to equilibrium correlation
functions. In this framework we then utilize finite temperature Green functions
to evaluate the collision integrals. The elementary reaction cross section is
evaluated within the Faddeev approach that is suitably modified to reflect the
properties of the surrounding hot and dense matter.Comment: 15 pages, 5 figure
Theoretical Aspects of Science with Radioactive Nuclear Beams
Physics of radioactive nuclear beams is one of the main frontiers of nuclear
science today. Experimentally, thanks to technological developments, we are on
the verge of invading the territory of extreme N/Z ratios in an unprecedented
way. Theoretically, nuclear exotica represent a formidable challenge for the
nuclear many-body theories and their power to predict nuclear properties in
nuclear terra incognita. It is important to remember that the lesson learned by
going to the limits of the nuclear binding is also important for normal nuclei
from the neighborhood of the beta stability valley. And, of course, radioactive
nuclei are crucial astrophysically; they pave the highway along which the
nuclear material is transported up in the proton and neutron numbers during the
complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be
published in: Theme Issue on Science with Beams of Radioactive Nuclei,
Philosophical Transactions, ed. by W. Gelletl
Four-particle condensate in strongly coupled fermion systems
Four-particle correlations in fermion systems at finite temperatures are
investigated with special attention to the formation of a condensate. Instead
of the instability of the normal state with respect to the onset of pairing
described by the Gorkov equation, a new equation is obtained which describes
the onset of quartetting. Within a model calculation for symmetric nuclear
matter, we find that below a critical density, the four-particle condensation
(alpha-like quartetting) is favored over deuteron condensation (triplet
pairing). This pairing-quartetting competition is expected to be a general
feature of interacting fermion systems, such as the excition-biexciton system
in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be
published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998
(Volume 80, Number 15
Space-time versus particle-hole symmetry in quantum Enskog equations
The non-local scattering-in and -out integrals of the Enskog equation have
reversed displacements of colliding particles reflecting that the -in and -out
processes are conjugated by the space and time inversions. Generalisations of
the Enskog equation to Fermi liquid systems are hindered by a request of the
particle-hole symmetry which contradicts the reversed displacements. We resolve
this problem with the help of the optical theorem. It is found that space-time
and particle-hole symmetry can only be fulfilled simultaneously for the
Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form
allows only for particle-hole symmetry but not for space-time symmetry due to a
stimulated emission of Bosons
Thermodynamics of - condensate in asymmetric nuclear matter
We study the neutron-proton pairing in nuclear matter as a function of
isospin asymmetry at finite temperatures and the saturation density using
realistic nuclear forces and Brueckner-renormalized single particle spectra.
Our computation of the thermodynamic quantities shows that while the difference
of the entropies of the superconducting and normal phases anomalously changes
its sign as a function of temperature for arbitrary asymmetry, the grand
canonical potential does not; the superconducting state is found to be stable
in the whole temperature-asymmetry plane. The pairing gap completely disappears
for density-asymmetries exceeding .Comment: 7 pages, including 3 figures, uses revte
Differential flow in heavy-ion collisions at balance energies
A strong differential transverse collective flow is predicted for the first
time to occur in heavy-ion collisions at balance energies. We also give a novel
explanation for the disappearance of the total transverse collective flow at
the balance energies. It is further shown that the differential flow especially
at high transverse momenta is a useful microscope capable of resolving the
balance energy's dual sensitivity to both the nuclear equation of state and
in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres
The damping width of giant dipole resonances of cold and hot nuclei: a macroscopic model
A phenomenological macroscopic model of the Giant Dipole Resonance (GDR)
damping width of cold- and hot-nuclei with ground-state spherical and
near-spherical shapes is developed. The model is based on a generalized Fermi
Liquid model which takes into account the nuclear surface dynamics. The
temperature dependence of the GDR damping width is accounted for in terms of
surface- and volume-components. Parameter-free expressions for the damping
width and the effective deformation are obtained. The model is validated with
GDR measurements of the following nuclides, K, Ca, Sc,
Cu, Sn,Eu, Hg, and Pb, and is
compared with the predictions of other models.Comment: 10 pages, 5 figure
- …
