14,157 research outputs found

    Spin Transport at Interfaces with Spin-Orbit Coupling: Phenomenology

    Full text link
    This paper presents the boundary conditions needed for drift-diffusion models to treat interfaces with spin-orbit coupling. Using these boundary conditions for heavy metal/ferromagnet bilayers, solutions of the drift-diffusion equations agree with solutions of the spin-dependent Boltzmann equation and allow for a much simpler interpretation of the results. A key feature of these boundary conditions is their ability to capture the role that in-plane electric fields have on the generation of spin currents that flow perpendicularly to the interface. The generation of these spin currents is a direct consequence of the effect of interfacial spin-orbit coupling on interfacial scattering. In heavy metal/ferromagnet bilayers, these spin currents provide an important mechanism for the creation of damping-like and field-like torques; they also lead to possible reinterpretations of experiments in which interfacial contributions to spin torques are thought to be suppressed.Comment: 16 pages, 4 figures; abstract revised, introduction extended, references added, results unchange

    Superspace formulation and correlation functions of 3d superconformal field theories

    Get PDF
    We study 3d3d SCFTs in the superspace formalism and discuss superfields and on-shell higher spin current multiplets in free 3d3d SCFTs with N=1,2,3,4\mathcal{N}= 1,2,3,4 and 66 superconformal symmetry. For N=1\mathcal{N}=1 3d SCFTs we determine the superconformal invariants in superspace needed for constructing 3-point functions of higher spin operators, find the non-linear relations between the invariants and consequently write down all the independent invariant structures, both parity even and odd, for various 3-point functions of higher spin operators.Comment: typos corrected, references added. Accepted for publication in JHE

    Macroscopic Resonant Tunneling in the Presence of Low Frequency Noise

    Full text link
    We develop a theory of macroscopic resonant tunneling of flux in a double-well potential in the presence of realistic flux noise with significant low-frequency component. The rate of incoherent flux tunneling between the wells exhibits resonant peaks, the shape and position of which reflect qualitative features of the noise, and can thus serve as a diagnostic tool for studying the low-frequency flux noise in SQUID qubits. We show, in particular, that the noise-induced renormalization of the first resonant peak provides direct information on the temperature of the noise source and the strength of its quantum component.Comment: 4 pages, 1 figur

    Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction

    Get PDF
    We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junction's magnetization configuration. The magneto-Seebeck effect results from variations in asymmetry of the energy-dependent transmission instead. We report that this difference in origin allows for CoPt|MgO|Pt to possess strong thermal magnetic-transport anisotropy.Comment: 6 pages, 6 figure

    Nonlocal mixing of supercurrents in Josephson ballistic point contact

    Full text link
    We study coherent current states in the mesoscopic superconducting weak link simultaneously subjected to the order parameter phase difference on the contact and to the tangential to the junction interface superfluid velocity in the banks. The Josephson current-phase relation controlled by the external transport current is obtained. At phase difference close to pi the nonlocal nature of the Josephson phase-dependent current results in the appearance of two vortexlike states in the vicinity of the contact.Comment: 4 pages, 6 figures; to be published in Phys. Rev. B; e-mail: [email protected]

    Kinematic Density Waves in Accretion Disks

    Full text link
    When thin accretion disks around black holes are perturbed, the main restoring force is gravity. If gas pressure, magnetic stresses, and radiation pressure are neglected, the disk remains thin as long as orbits do not intersect. Intersections would result in pressure forces which limit the growth of perturbations. We find that a discrete set of perturbations is possible for which orbits remain non-intersecting for arbitrarily long times. These modes define a discrete set of frequencies. We classify all long-lived perturbations for arbitrary potentials and show how their mode frequencies are related to pattern speeds computed from the azimuthal and epicyclic frequencies. We show that modes are concentrated near radii where the pattern speed has vanishing radial derivative. We explore these modes around Kerr black holes as a possible explanation for the high-frequency quasi-periodic oscillations of black hole binaries such as GRO J1655-40. The long-lived modes are shown to coincide with diskoseismic waves in the limit of small sound speed. While the waves have long lifetime, they have the wrong frequencies to explain the pairs of high-frequency quasi-periodic oscillations observed in black hole binaries.Comment: 28 pages, 6 figures; extended comparison with diskoseismology; added reference to astro-ph/060368

    Quantum Nondemolition Charge Measurement of a Josephson Qubit

    Full text link
    In a qubit system, the measurement operator does not necessarily commute with the qubit Hamiltonian, so that the readout process demolishes (mixes) the qubit energy eigenstates. The readout time is therefore limited by such a mixing time and its fidelity will be reduced. A quantum nondemolition readout scheme is proposed in which the charge of a flux qubit is measured. The measurement operator is shown to commute with the qubit Hamiltonian in the reduced two-level Hilbert space, even though the Hamiltonian contains non-commuting charge and flux terms.Comment: 4 pages, 3 figures, a paragraph added to describe how the scheme works in charge regim

    Effect of point-contact transparency on coherent mixing of Josephson and transport supercurrents

    Full text link
    The influence of electron reflection on dc Josephson effect in a ballistic point contact with transport current in the banks is considered theoretically. The effect of finite transparency on the vortex-like currents near the contact and at the phase difference ϕ=π,\phi =\pi , which has been predicted recently \cite{KOSh}, is investigated. We show that at low temperatures even a small reflection on the contact destroys the mentioned vortex-like current states, which can be restored by increasing of the temperature.Comment: 6 pages, 8 Figures, Latex Fil
    corecore