21,544 research outputs found

    Lefschetz property and powers of linear forms in K[x,y,z]\mathbb{K}[x,y,z]

    Full text link
    In [9], Migliore, Mir\'o-Roig and Nagel, proved that if R=K[x,y,z]R = \mathbb{K}[x,y,z], where K\mathbb{K} is a field of characteristic zero, and I=(L1a1,,Lra4)I=(L_1^{a_1},\dots,L_r^{a_4}) is an ideal generated by powers of 4 general linear forms, then the multiplication by the square L2L^2 of a general linear form LL induces an homomorphism of maximal rank in any graded component of R/IR/I. More recently, Migliore and Mir\'o-Roig proved in [8] that the same is true for any number of general linear forms, as long the powers are uniform. In addition, they conjecture that the same holds for arbitrary powers. In this paper we will solve this conjecture and we will prove that if I=(L1a1,,Lrar)I=(L_1^{a_1},\dots,L_r^{a_r}) is an ideal of RR generated by arbitrary powers of any set of general linear forms, then the multiplication by the square L2L^2 of a general linear form LL induces an homomorphism of maximal rank in any graded component of R/IR/I.Comment: 12 page

    Gravitation and Duality Symmetry

    Full text link
    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes, references added. Accepted for publication in Int. J. Mod. Phys.

    Primordial magnetic fields constrained by CMB anisotropies and dynamo cosmology

    Full text link
    Magneto-curvature stresses could deform magnetic field lines and this would give rise to back reaction and restoring magnetic stresses [Tsagas, PRL (2001)]. Barrow et al [PRD (2008)] have shown in Friedman universe the expansion to be slow down in spatial section of negative Riemann curvatures. From Chicone et al [CMP (1997)] paper, proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature, here one applies the Barrow-Tsagas ideas to cosmic dynamos. Fast dynamo covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations [Clarkson et al, MNRAS (2005)] is considered. In absence of advection a fast dynamo is also obtained. Viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data (δBB105\frac{{\delta}B}{B}\approx{10^{-5}}), one computes stretching δVyVy=1.5δBB1.5×105\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}. Zeldovich et al has computed the maximum magnetic growth rate as γmax8.0×101t1{\gamma}_{max}\approx{8.0{\times}10^{-1}t^{-1}}. From COBE data one computes a lower growth rate for the magnetic field as γCOBE6.0×106t1{\gamma}_{COBE}\approx{6.0{\times}10^{-6}t^{-1}}, well-within Zeldovich et al estimate. Instead of the Harrison value Bt4/3B\approx{t^{{4/3}}} one obtains the lower primordial field B106tB\approx{10^{-6}t} which yields the B106GB\approx{10^{-6}G} at the 1s1s Big Bang time.Comment: Dept of theoretical physics-UERJ-Brasi

    Teleparallel Spin Connection

    Get PDF
    A new expression for the spin connection of teleparallel gravity is proposed, given by minus the contorsion tensor plus a zero connection. The corresponding minimal coupling is covariant under local Lorentz transformation, and equivalent to the minimal coupling prescription of general relativity. With this coupling prescription, therefore, teleparallel gravity turns out to be fully equivalent to general relativity, even in the presence of spinor fields.Comment: 2 pages, RevTeX, to appear in Phys. Rev D (Brief Report

    Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed

    Get PDF
    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion
    corecore