551 research outputs found

    Bounds on the Sum Capacity of Synchronous Binary CDMA Channels

    Full text link
    In this paper, we obtain a family of lower bounds for the sum capacity of Code Division Multiple Access (CDMA) channels assuming binary inputs and binary signature codes in the presence of additive noise with an arbitrary distribution. The envelope of this family gives a relatively tight lower bound in terms of the number of users, spreading gain and the noise distribution. The derivation methods for the noiseless and the noisy channels are different but when the noise variance goes to zero, the noisy channel bound approaches the noiseless case. The behavior of the lower bound shows that for small noise power, the number of users can be much more than the spreading gain without any significant loss of information (overloaded CDMA). A conjectured upper bound is also derived under the usual assumption that the users send out equally likely binary bits in the presence of additive noise with an arbitrary distribution. As the noise level increases, and/or, the ratio of the number of users and the spreading gain increases, the conjectured upper bound approaches the lower bound. We have also derived asymptotic limits of our bounds that can be compared to a formula that Tanaka obtained using techniques from statistical physics; his bound is close to that of our conjectured upper bound for large scale systems.Comment: to be published in IEEE Transactions on Information Theor

    Propagating phonons coupled to an artificial atom

    Full text link
    Quantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons. In contrast, we couple propagating phonons to an artificial atom in the quantum regime, and reproduce findings from quantum optics with sound taking over the role of light. Our results highlight the similarities between phonons and photons, but also point to new opportunities arising from the unique features of quantum mechanical sound. The low propagation speed of phonons should enable new dynamic schemes for processing quantum information, and the short wavelength allows regimes of atomic physics to be explored which cannot be reached in photonic systems.Comment: 30 pages, 6 figures, 1 tabl

    Measuring Topological Chaos

    Full text link
    The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines. A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles is computed. A ``braiding exponent'' is then defined to characterize the complexity of the braid. This exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby trajectories. Measuring chaos in this manner has several advantages, especially from the experimental viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro

    Echoes in classical dynamical systems

    Full text link
    Echoes arise when external manipulations to a system induce a reversal of its time evolution that leads to a more or less perfect recovery of the initial state. We discuss the accuracy with which a cloud of trajectories returns to the initial state in classical dynamical systems that are exposed to additive noise and small differences in the equations of motion for forward and backward evolution. The cases of integrable and chaotic motion and small or large noise are studied in some detail and many different dynamical laws are identified. Experimental tests in 2-d flows that show chaotic advection are proposed.Comment: to be published in J. Phys.

    Steady Stokes flow with long-range correlations, fractal Fourier spectrum, and anomalous transport

    Full text link
    We consider viscous two-dimensional steady flows of incompressible fluids past doubly periodic arrays of solid obstacles. In a class of such flows, the autocorrelations for the Lagrangian observables decay in accordance with the power law, and the Fourier spectrum is neither discrete nor absolutely continuous. We demonstrate that spreading of the droplet of tracers in such flows is anomalously fast. Since the flow is equivalent to the integrable Hamiltonian system with 1 degree of freedom, this provides an example of integrable dynamics with long-range correlations, fractal power spectrum, and anomalous transport properties.Comment: 4 pages, 4 figures, published in Physical Review Letter

    Point vortices on the sphere: a case with opposite vorticities

    Full text link
    We study systems formed of 2N point vortices on a sphere with N vortices of strength +1 and N vortices of strength -1. In this case, the Hamiltonian is conserved by the symmetry which exchanges the positive vortices with the negative vortices. We prove the existence of some fixed and relative equilibria, and then study their stability with the ``Energy Momentum Method''. Most of the results obtained are nonlinear stability results. To end, some bifurcations are described.Comment: 35 pages, 9 figure

    Quantification of the performance of chaotic micromixers on the basis of finite time Lyapunov exponents

    Get PDF
    Chaotic micromixers such as the staggered herringbone mixer developed by Stroock et al. allow efficient mixing of fluids even at low Reynolds number by repeated stretching and folding of the fluid interfaces. The ability of the fluid to mix well depends on the rate at which "chaotic advection" occurs in the mixer. An optimization of mixer geometries is a non trivial task which is often performed by time consuming and expensive trial and error experiments. In this paper an algorithm is presented that applies the concept of finite-time Lyapunov exponents to obtain a quantitative measure of the chaotic advection of the flow and hence the performance of micromixers. By performing lattice Boltzmann simulations of the flow inside a mixer geometry, introducing massless and non-interacting tracer particles and following their trajectories the finite time Lyapunov exponents can be calculated. The applicability of the method is demonstrated by a comparison of the improved geometrical structure of the staggered herringbone mixer with available literature data.Comment: 9 pages, 8 figure

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure
    corecore