288 research outputs found

    Study of Foaming Properties and Effect of the Isomeric Distribution of Some Anionic Surfactants

    Get PDF
    Using different reaction conditions of photosulfochlorination of n-dodecane, two samples of anionic surfactants of sulfonate type are obtained. Their micellar behavior has been already reported and the relationship between their isomeric distribution and their chemical structures and micellar behaviors have been more thoroughly explored. In this investigation, we screened the foaming properties (foaming power and foam stability) by a standardized method very similar to the Ross–Miles foaming tests to identify which surfactants are suitable for applications requiring high foaming, or, alternatively, low foaming. The results obtained for the synthesized surfactants are compared to those obtained for an industrial sample of secondary alkanesulfonate (Hostapur 60) and to those of a commercial sample of sodium dodecylsulfate used as reference for anionic surfactants. The foam formation and foam stability of aqueous solutions of the two samples of dodecanesulfonate are compared as a function of their isomeric distribution. These compounds show good foaming power characterized in most cases by metastable or dry foams. The highest foaming power is obtained for the sample rich in primary isomers which also produces foam with a relatively high stability. For the sample rich in secondary isomers we observe under fixed conditions a comparable initial foam height but the foam stability turns out to be low. This property is interesting for applications requiring low foaming properties such as dishwashing liquid for machines. The best results are observed near and above the critical micellar concentrations and at 25 C for both the samples

    The consistency condition for the three-point function in dissipative single-clock inflation

    Full text link
    We generalize the consistency condition for the three-point function in single field inflation to the case of dissipative, multi-field, single-clock models. We use the recently introduced extension of the effective field theory of inflation that accounts for dissipative effects, to provide an explicit proof to leading (non-trivial) order in the generalized slow roll parameters and mixing with gravity scales. Our results illustrate the conditions necessary for the validity of the consistency relation in situations with many degrees of freedom relevant during inflation, namely that there is a preferred clock. Departures from this condition in forthcoming experiments would rule out not only single field but also a large class of multi-field models.Comment: 26+11 page

    A non-Gaussian landscape

    Get PDF
    Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Transport equations for the inflationary trispectrum

    Get PDF
    We use transport techniques to calculate the trispectrum produced in multiple-field inflationary models with canonical kinetic terms. Our method allows the time evolution of the local trispectrum parameters, tauNL and gNL, to be tracked throughout the inflationary phase. We illustrate our approach using examples. We give a simplified method to calculate the superhorizon part of the relation between field fluctuations on spatially flat hypersurfaces and the curvature perturbation on uniform density slices, and obtain its third-order part for the first time. We clarify how the 'backwards' formalism of Yokoyama et al. relates to our analysis and other recent work. We supply explicit formulae which enable each inflationary observable to be computed in any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published in JCAP; typo fixed in Eq. (54

    Anomalous Dimensions and Non-Gaussianity

    Full text link
    We analyze the signatures of inflationary models that are coupled to strongly interacting field theories, a basic class of multifield models also motivated by their role in providing dynamically small scales. Near the squeezed limit of the bispectrum, we find a simple scaling behavior determined by operator dimensions, which are constrained by the appropriate unitarity bounds. Specifically, we analyze two simple and calculable classes of examples: conformal field theories (CFTs), and large-N CFTs deformed by relevant time-dependent double-trace operators. Together these two classes of examples exhibit a wide range of scalings and shapes of the bispectrum, including nearly equilateral, orthogonal and local non-Gaussianity in different regimes. Along the way, we compare and contrast the shape and amplitude with previous results on weakly coupled fields coupled to inflation. This signature provides a precision test for strongly coupled sectors coupled to inflation via irrelevant operators suppressed by a high mass scale up to 1000 times the inflationary Hubble scale.Comment: 40 pages, 10 figure

    Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis

    Get PDF
    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci

    Constraining the WMAP9 bispectrum and trispectrum with needlets

    Get PDF
    We develop a needlet approach to estimate the amplitude of general (including non-separable) bispectra and trispectra in the cosmic microwave background, and apply this to the WMAP 9-year data. We obtain estimates for the `orthogonal' bispectrum mode, yielding results which are consistent with the WMAP 7-year data. We do not observe the frequency-dependence suggested by the WMAP team's analysis of the 9-year data. We present 1-σ\sigma constraints on the `local' trispectrum shape \gnl/10^5= -4.1\pm 2.3, the `c1c1' equilateral model \gnl^{c_1}/10^6= -0.8\pm 2.9, and the constant model \gnl^{\rm{const}}/10^6= -0.2\pm 1.8, together with a 95%95\% confidence-level upper bound on the multifield local parameter \taunl<22000. We estimate the bias on these parameters produced by point sources. The techniques developed in this paper should prove useful for other datasets such as Planck.Comment: 21 pages - matches published versio

    S.11.1 Influence of digital ulcer healing on disability and daily activity limitations in SSc

    Get PDF
    Objective. We previously showed that DU significantly increased global and hand disability with a significant impact on activities of daily living (ADLs) and work disability. This study aims to evaluate the impact of digital ulcer (DU) healing on disability and daily activity limitations in SSc. Methods. From January 2008 and June 2009, we prospectively evaluated 189 SSc patients for DU history, disability, employment and occupational status during meetings of the French SSc Patient Association (n = 86, 45.5%) or during hospitalization (n = 103, 54.5%)1. Among the 60 patients with at least one active DU at baseline (M0), 40 patients were followed longitudinally over 6 (3) months. These patients were evaluated for DU history, global and hand disability, health-related quality of life (HRQoL), daily activity limitation and employment status. Results. The median (IQR) age was 57.5 (43.5-68) years and the median (IQR) disease duration was 8.3 (3-16.5) years. Twenty-two (55%) patients had diffuse SSc and 34 (85%) were females. At baseline, a mean of 2.9 (2.8) DU per patient was reported. Thirty-three (82.5%) patients had ischaemic DU, 7 (17.5%) patients had >1 DU associated with calcinosis and 13 (32.5%) patients had mechanical DU. Thirteen (32.5%) patients had >4 DU at baseline. Among the 40 patients, 16 (40%) patients showed complete ulcer healing. In these patients with DU, the presence of calcinosis was associated with a lower probability of healing (P = 0.03). Comparison between healed and no-healed DU patients showed an improvement of hand disability provided by an improvement of the Cochin Hand Function score (P = 0.05)) and a trend towards HAQ domain dressing and grooming (P = 0.06) between M0 and M6 (3) visit in healed patients but not in no-healed patients. Concerning HRQoL, there were no difference for Mental and Physical component Scores of SF-36 but significant improvement of Bodily Pain score (P = 0.04) and Physical Role score (P = 0.05) between M0 and M6 (3) visit in patients with healed DU. The absence of healing was associated with significantly decreased work productivity (P = 0.05), whereas the performance in ADL was not significantly decreased (P = 0.15). Patients who were on sick-leave and who received some help for household tasks at the time of active DU were more likely to heal. Conclusion. For the first time, we provide prospective data with evidence that DU healing is associated with an improvement in hand function. Sick leave was associated with better healing of D
    corecore