1,774 research outputs found

    Exact Flow Equations and the U(1)-Problem

    Get PDF
    The effective action of a SU(N)-gauge theory coupled to fermions is evaluated at a large infrared cut-off scale k within the path integral approach. The gauge field measure includes topologically non-trivial configurations (instantons). Due to the explicit infrared regularisation there are no gauge field zero modes. The Dirac operator of instanton configurations shows a zero mode even after the infrared regularisation, which leads to U_A(1)-violating terms in the effective action. These terms are calculated in the limit of large scales k.Comment: 22 pages, latex, no figures, with stylistic changes and some arguments streamlined, typos corrected, References added, to appear in Phys. Rev.

    Effective Average Action in N=1 Super-Yang-Mills Theory

    Full text link
    For N=1 Super-Yang-Mills theory we generalize the effective average action Gamma_k in a manifest supersymmetric way using the superspace formalism. The exact evolution equation for Gamma_k is derived and, introducing as an application a simple truncation, the standard one-loop beta-function of N=1 SYM theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear in Phys. Rev.

    Winding number transitions at finite temperature in the Abelian-Higgs model

    Get PDF
    Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the sphaleron transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.Comment: final version, to appear in J. Phys.

    Large N Quantum Time Evolution Beyond Leading Order

    Get PDF
    For quantum theories with a classical limit (which includes the large N limits of typical field theories), we derive a hierarchy of evolution equations for equal time correlators which systematically incorporate corrections to the limiting classical evolution. Explicit expressions are given for next-to-leading order, and next-to-next-to-leading order time evolution. The large N limit of N-component vector models, and the usual semiclassical limit of point particle quantum mechanics are used as concrete examples. Our formulation directly exploits the appropriate group structure which underlies the construction of suitable coherent states and generates the classical phase space. We discuss the growth of truncation error with time, and argue that truncations of the large-N evolution equations are generically expected to be useful only for times short compared to a ``decoherence'' time which scales like N^{1/2}.Comment: 36 pages, 2 eps figures, latex, uses revtex, epsfig, float

    Exact and Truncated Dynamics in Nonequilibrium Field Theory

    Get PDF
    Nonperturbative dynamics of quantum fields out of equilibrium is often described by the time evolution of a hierarchy of correlation functions, using approximation methods such as Hartree, large N, and nPI-effective action techniques. These truncation schemes can be implemented equally well in a classical statistical system, where results can be tested by comparison with the complete nonlinear evolution obtained by numerical methods. For a 1+1 dimensional scalar field we find that the early-time behaviour is reproduced qualitatively by the Hartree dynamics. The inclusion of direct scattering improves this to the quantitative level. We show that the emergence of nonthermal temperature profiles at intermediate times can be understood in terms of the fixed points of the evolution equations in the Hartree approximation. The form of the profile depends explicitly on the initial ensemble. While the truncated evolution equations do not seem to be able to get away from the fixed point, the full nonlinear evolution shows thermalization with a (surprisingly) slow relaxation.Comment: 30 pages with 12 eps figures, minor changes; to appear in Phys.Rev.

    Tunneling in quantum cosmology: numerical study of particle creation

    Full text link
    We consider a minisuperspace model for a closed universe with small and positive cosmological constant, filled with a massive scalar field conformally coupled to gravity. In the quantum version of this model, the universe may undergo a tunneling transition through an effective barrier between regions of small and large scale factor. We solve numerically the minisuperspace Wheeler--De Witt equation with tunneling boundary conditions for the wave function of the universe, and find that tunneling in quantum cosmology is quite different from that in quantum mechanics. Namely, the matter degree of freedom gets excited under the barrier, provided its interaction with the scale factor is not too weak, and makes a strong back reaction onto tunneling. In the semiclassical limit of small values of cosmological constant, the matter energy behind the barrier is close to the height of the barrier: the system ``climbs up'' the barrier, and then evolves classically from its top. These features are even more pronounced for inhomogeneous modes of matter field. Extrapolating to field theory we thus argue that high momentum particles are copiously created in the tunneling process. Nevertheless, we find empirical evidence for the semiclassical-type scaling with the cosmological constant of the wave function under and behind the barrier.Comment: 29 pages, 17 figure

    Effective Action for the Quark-Meson Model

    Full text link
    The scale dependence of an effective average action for mesons and quarks is described by a nonperturbative flow equation. The running couplings lead to spontaneous chiral symmetry breaking. We argue that for strong Yukawa coupling between quarks and mesons the low momentum physics is essentially determined by infrared fixed points. This allows us to establish relations between various parameters related to the meson potential. The results for fπf_\pi and \VEV{\olpsi\psi} are not very sensitive to the poorly known details of the quark--meson effective action at scales where the mesonic bound states form. For realistic constituent quark masses we find fπf_\pi around 100\MeV.Comment: 56 pages (including 10 figures and 1 table), uses epsf.st

    Signatures of unstable semiclassical trajectories in tunneling

    Full text link
    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the "phase transition" between the cases of stable and unstable trajectories across certain "critical" value of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory.Comment: Journal version; 48 pages, 16 figure

    Synthesis and biological evaluation of new simple indolic non peptidic HIV Protease inhibitors: The effect of different substitution patterns

    Get PDF
    New structurally simple indolic non peptidic HIV Protease inhibitors were synthesized from (S)- glycidol by regioselective methods. Following the concept of targeting the protein backbone, different substitution patterns were introduced onto the common stereodefined isopropanolamine core modifying the type of functional group on the indole, the position of the functional group on the indole and the type of the nitrogen containing group (sulfonamides or perhydroisoquinoline), alternatively. The systematic study on in vitro inhibition activity of such compounds confirmed the general beneficial effect of the 5-indolyl substituents in presence of arylsulfonamide moieties, which furnished activities in the micromolar range. Preliminary docking analysis allowed to identify several key features of the binding mode of such compounds to the protease
    corecore