1,674 research outputs found

    New supersymmetric Wilson loops in ABJ(M) theories

    Full text link
    We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembo's construction in N=4 SYM. The second one involves arbitrary curves on the two dimensional sphere. In both cases one can add certain scalar and fermionic couplings to the Wilson loop so it preserves at least two supercharges. Some previously known loops, notably the 1/2 BPS circle, belong to this class, but we point out more special cases which were not known before. They could provide further tests of the gauge/gravity correspondence in the ABJ(M) case and interesting observables, exactly computable by localizationComment: 9 pages, no figure. arXiv admin note: text overlap with arXiv:0912.3006 by other author

    Line polar Grassmann codes of orthogonal type

    Get PDF
    Polar Grassmann codes of orthogonal type have been introduced in I. Cardinali and L. Giuzzi, \emph{Codes and caps from orthogonal Grassmannians}, {Finite Fields Appl.} {\bf 24} (2013), 148-169. They are subcodes of the Grassmann code arising from the projective system defined by the Pl\"ucker embedding of a polar Grassmannian of orthogonal type. In the present paper we fully determine the minimum distance of line polar Grassmann Codes of orthogonal type for q odd

    Impure Aspects of Supersymmetric Wilson Loops

    Get PDF
    We study a general class of supersymmetric Wilson loops operator in N = 4 super Yang-Mills theory, obtained as orbits of conformal transformations. These loops are the natural generalization of the familiar circular Wilson-Maldacena operator and their supersymmetric properties are encoded into a Killing spinor that is not pure. We present a systematic analysis of their scalar couplings and of the preserved supercharges, modulo the action of the global symmetry group, both in the compact and in the non-compact case. The quantum behavior of their expectation value is also addressed, in the simplest case of the Lissajous contours: explicit computations at weak-coupling, through Feynman diagrams expansion, and at strong-coupling, by means of AdS/CFT correspondence, suggest the possibility of an exact evaluation.Comment: 40 pages, 4 figure
    corecore