3,099 research outputs found

    Designing an educational tool to revitalise woven textile mending

    Get PDF
    Purpose: Due to advances in woollen woven textile manufacture, the occurrence of industrial textile mending has diminished. While the demand for the skill is still present in certain settings, the availability of learning resources is limited relating to this particular craft. The purpose of this project is to design and produce an effective educational learning tool to teach mending skills. Design/methodology/approach: To address the aims of this dissertation project, bricolage methodology and qualitative research methods have been employed. Using the findings from primary and secondary research, the educational, instructional video was developed in order to document and display the mending craft practice in a format that would endure and be accessible to anybody who wished to learn. After determining that the ability to understand woven pattern structures was key in learning mending skill, the visual tool was developed using two dimensional woven structure diagrams and animations to train pattern comprehension and recognition. Findings: The results of educational video tool testing confirmed that using two dimensional animated diagrams of woven structures was an effective method to teach pattern comprehension. Also, it was found that the trainee’s participation in the instructional video was effective in helping to teach other learners mending skills. The structure of the educational video made the learning more organized and comprehensible as it assisted in learning process through the combined media that reiterated the same information in different formats. Originality/value: Design technology was applied to provide a comprehensible educational resource that could be used to learn and revitalise mending skills. The principles and methods applied in this resource could be adapted to teach different textile disciplines or other craft practices

    Models for Chronology Selection

    Get PDF
    In this paper, we derive an expression for the grand canonical partition function for a fluid of hot, rotating massless scalar field particles in the Einstein universe. We consider the number of states with a given energy as one increases the angular momentum so that the fluid rotates with an increasing angular velocity. We find that at the critical value when the velocity of the particles furthest from the origin reaches the speed of light, the number of states tends to zero. We illustrate how one can also interpret this partition function as the effective action for a boosted scalar field configuration in the product of three dimensional de Sitter space and S1S^1. In this case, we consider the number of states with a fixed linear momentum around the S1S^1 as the particles are given more and more boost momentum. At the critical point when the spacetime is about to develop closed timelike curves, the number of states again tends to zero. Thus it seems that quantum mechanics naturally enforces the chronology protection conjecture by superselecting the causality violating field configurations from the quantum mechanical phase space.Comment: 20 pages, Late

    Prospects for studies of the free fall and gravitational quantum states of antimatter

    Get PDF
    Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium and antihydrogen. Among those, the project GBAR in CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we review the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.Comment: This work reviews contributions made at the GRANIT 2014 workshop on prospects for the observation of the free fall and gravitational quantum states of antimatte

    Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing

    Full text link
    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that i) approach state-of-the-art classification accuracy across 8 standard datasets, encompassing vision and speech, ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1200 and 2600 frames per second and using between 25 and 275 mW (effectively > 6000 frames / sec / W) and iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. For the first time, the algorithmic power of deep learning can be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.Comment: 7 pages, 6 figure

    Splitting fields and general differential Galois theory

    Full text link
    An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions..Comment: 33 pages, this version coincides with the published on

    Chronology Protection in Generalized Godel Spacetime

    Get PDF
    The effective action of a free scalar field propagating in the generalized Godel spacetime is evaluated by the zeta-function regularization method. From the result we show that the renormalized stress energy tensor may be divergent at the chronology horizon. This gives a support to the chronology protection conjecture.Comment: Latex 6 pages, typos correcte

    Divergences in the Effective Action for Acausal Spacetimes

    Get PDF
    The 1--loop effective Lagrangian for a massive scalar field on an arbitrary causality violating spacetime is calculated using the methods of Euclidean quantum field theory in curved spacetime. Fields of spin 1/2, spin 1 and twisted field configurations are also considered. In general, we find that the Lagrangian diverges to minus infinity at each of the nth polarised hypersurfaces of the spacetime with a structure governed by a DeWitt-Schwinger type expansion.Comment: 17 pages, Late

    A Self-Consistent Vacuum for Misner Space and the Chronology Protection Conjecture

    Full text link
    In this paper we find a self-consistent vacuum for Misner space. For this "adapted" Rindler vacuum the renormalized stress-energy tensor is zero throughout the Misner space. A point-like particle detector traveling on a timelike geodesic in a Misner space with this vacuum detects nothing. Misner space with this vacuum thus creates no problems for time travel in and of itself but a time traveler may pose a danger to himself and to the spacetime.Comment: 5 pages, received September 5, 1997, with a note added November 24, 199

    Rotation and the AdS/CFT correspondence

    Get PDF
    In asymptotically flat space a rotating black hole cannot be in thermodynamic equilibrium because the thermal radiation would have to be co-rotating faster than light far from the black hole. However in asymptotically anti-de Sitter space such equilibrium is possible for certain ranges of the parameters. We examine the relationship between conformal field theory in rotating Einstein universes of dimensions two to four and Kerr anti-de Sitter black holes in dimensions three to five. The five dimensional solution is new. We find similar divergences in the partition function of the conformal field theory and the action of the black hole at the critical angular velocity at which the Einstein rotates at the speed of light. This should be an interesting limit in which to study large NN Yang-Mills.Comment: 24 pages, RevTeX, 1 figure, references adde
    corecore