11 research outputs found

    Commissioning of the Control System for the LHC Beam Dump Kicker System

    Get PDF
    The beam dumping system of the Large Hadron Collider (LHC) provides a loss-free fast extraction of the circulating beams. It consists per ring of 15 extraction kickers, followed by 15 septum magnets, 10 dilution kickers and an external absorber. A dump request can occur at any moment during the operation of the collider, from injection energy up to collision energy. All kickers must fire synchronously with the beam abort gap to properly extract the whole beam in one single turn into the extraction channel. Incorrect operation of the extraction kickers can lead to beam losses and severe damage to the machine. The control system of the LHC beam dump kickers is based on a modular architecture composed of 4 different sub-systems, each with a specific function, in order to detect internal failures, to ensure a correct extraction trajectory over the whole LHC operational range, to synchronise and distribute dumps requests, and to analyse the transient signals recorded during the beam dumping process. The control architecture is presented and the different steps performed for its validation, from the individual sub-systems tests to the final commissioning with beam, are describe

    Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy

    No full text
    International audienceDilated cardiomyopathy (DCM) is one of the leading causes of heart failure with high morbidity and mortality. More than 40 genes have been reported to cause DCM. To provide new insights into the pathophysiology of dilated cardiomyopathy, a next-generation sequencing (NGS) workflow based on a panel of 48 cardiomyopathies-causing genes was used to analyze a cohort of 222 DCM patients. Truncating variants were detected on 63 unrelated DCM cases (28.4%). Most of them were identified, as expected, on TTN (29 DCM probands), but truncating variants were also identified on myofibrillar myopathies causing genes in 17 DCM patients (7.7% of the DCM cohort): 10 variations on FLNC and 7 variations on BAG3. This study confirms that truncating variants on myofibrillar myopathies causing genes are frequently associated with dilated cardiomyopathies and also suggest that FLNC mutations could be considered as a common cause of dilated cardiomyopathy. Molecular approaches that would allow to detect systematically truncating variants in FLNC and BAG3 into genetic testing should significantly increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy

    MKI UFOs at Injection

    No full text
    During the MD, the production mechanism of UFOs at the injection kicker magnets (MKIs) was studied. This was done by pulsing the MKIs on a gap in the circulating beam, which led to an increased number of UFOs. In total 43 UFO type beam loss patterns at the MKIs were observed during the MD. The MD showed that pulsing the MKIs directly induces UFO type beam loss patterns. From the temporal characteristics of the loss profile, estimations about the dynamics of the UFOs are made

    Lancet Infect Dis

    No full text
    Background To address the unmet medical need for an effective prophylactic vaccine against Ebola virus we assessed the safety and immunogenicity of three different two-dose heterologous vaccination regimens with a replication-deficient adenovirus type 26 vector-based vaccine (Ad26.ZEBOV), expressing Zaire Ebola virus glycoprotein, and a non-replicating, recombinant, modified vaccinia Ankara (MVA) vector-based vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and nucleoprotein from the Tai Forest virus. Methods This randomised, observer-blind, placebo-controlled, phase 2 trial was done at seven hospitals in France and two research centres in the UK. Healthy adults (aged 18–65 years) with no history of Ebola vaccination were enrolled into four cohorts. Participants in cohorts I–III were randomly assigned (1:1:1) using computer-generated randomisation codes into three parallel groups (randomisation for cohorts II and III was stratified by country and age), in which participants were to receive an intramuscular injection of Ad26.ZEBOV on day 1, followed by intramuscular injection of MVA-BN-Filo at either 28 days (28-day interval group), 56 days (56-day interval group), or 84 days (84-day interval group) after the first vaccine. Within these three groups, participants in cohort II (14:1) and cohort III (10:3) were further randomly assigned to receive either Ad26.ZEBOV or placebo on day 1, followed by either MVA-BN-Filo or placebo on days 28, 56, or 84. Participants in cohort IV were randomly assigned (5:1) to receive one dose of either Ad26.ZEBOV or placebo on day 1 for vector shedding assessments. For cohorts II and III, study site personnel, sponsor personnel, and participants were masked to vaccine allocation until all participants in these cohorts had completed the post-MVA-BN-Filo vaccination visit at 6 months or had discontinued the trial, whereas cohort I was open-label. For cohort IV, study site personnel and participants were masked to vaccine allocation until all participants in this cohort had completed the post-vaccination visit at 28 days or had discontinued the trial. The primary outcome, analysed in all participants who had received at least one dose of vaccine or placebo (full analysis set), was the safety and tolerability of the three vaccination regimens, as assessed by participant-reported solicited local and systemic adverse events within 7 days of receiving both vaccines, unsolicited adverse events within 42 days of receiving the MVA-BN-Filo vaccine, and serious adverse events over 365 days of follow-up. The secondary outcome was humoral immunogenicity, as measured by the concentration of Ebola virus glycoprotein-binding antibodies at 21 days after receiving the MVA-BN-Filo vaccine. The secondary outcome was assessed in the per-protocol analysis set. This study is registered at ClinicalTrials.gov, NCT02416453, and EudraCT, 2015-000596-27. Findings Between June 23, 2015, and April 27, 2016, 423 participants were enrolled: 408 in cohorts I–III were randomly assigned to the 28-day interval group (123 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), the 56-day interval group (124 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), and the 84-day interval group (117 to receive Ad26.ZEBOV and MVA-BN-Filo, and 18 to receive placebo), and 15 participants in cohort IV were assigned to receive Ad26.ZEBOV and MVA-BN-Filo (n=13) or to receive placebo (n=2). 421 (99·5%) participants received at least one dose of vaccine or placebo. The trial was temporarily suspended after two serious neurological adverse events were reported, one of which was considered as possibly related to vaccination, and per-protocol vaccination was disrupted for some participants. Vaccinations were generally well tolerated. Mild or moderate local adverse events (mostly pain) were reported after 206 (62%) of 332 Ad26.ZEBOV vaccinations, 136 (58%) of 236 MVA-BN-Filo vaccinations, and 11 (15%) of 72 placebo injections. Systemic adverse events were reported after 255 (77%) Ad26.ZEBOV vaccinations, 116 (49%) MVA-BN-Filo vaccinations, and 33 (46%) placebo injections, and included mostly mild or moderate fatigue, headache, or myalgia. Unsolicited adverse events occurred after 115 (35%) of 332 Ad26.ZEBOV vaccinations, 81 (34%) of 236 MVA-BN-Filo vaccinations, and 24 (33%) of 72 placebo injections. At 21 days after receiving the MVA-BN-Filo vaccine, geometric mean concentrations of Ebola virus glycoprotein-binding antibodies were 4627 ELISA units (EU)/mL (95% CI 3649–5867) in the 28-day interval group, 10 131 EU/mL (8554–11 999) in the 56-day interval group, and 11 312 mL (9072–14106) in the 84-day interval group, with antibody concentrations persisting at 1149–1205 EU/mL up to day 365. Interpretation The two-dose heterologous regimen with Ad26.ZEBOV and MVA-BN-Filo was safe, well tolerated, and immunogenic, with humoral and cellular immune responses persisting for 1 year after vaccination. Taken together, these data support the intended prophylactic indication for the vaccine regimen. Funding Innovative Medicines Initiative and Janssen Vaccines & Prevention BV
    corecore