383 research outputs found
Complexity Characterization in a Probabilistic Approach to Dynamical Systems Through Information Geometry and Inductive Inference
Information geometric techniques and inductive inference methods hold great
promise for solving computational problems of interest in classical and quantum
physics, especially with regard to complexity characterization of dynamical
systems in terms of their probabilistic description on curved statistical
manifolds. In this article, we investigate the possibility of describing the
macroscopic behavior of complex systems in terms of the underlying statistical
structure of their microscopic degrees of freedom by use of statistical
inductive inference and information geometry. We review the Maximum Relative
Entropy (MrE) formalism and the theoretical structure of the information
geometrodynamical approach to chaos (IGAC) on statistical manifolds. Special
focus is devoted to the description of the roles played by the sectional
curvature, the Jacobi field intensity and the information geometrodynamical
entropy (IGE). These quantities serve as powerful information geometric
complexity measures of information-constrained dynamics associated with
arbitrary chaotic and regular systems defined on the statistical manifold.
Finally, the application of such information geometric techniques to several
theoretical models are presented.Comment: 29 page
Current-sheet formation in incompressible electron magnetohydrodynamics
The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex
structures is investigated by the Hamiltonian method in the framework of ideal
incompressible electron magnetohydrodynamics. For description of current-sheet
formation from a smooth initial magnetic field, local and nonlocal nonlinear
approximations are introduced and partially analyzed that are generalizations
of the previously known exactly solvable local model neglecting electron
inertia. Finally, estimations are made that predict finite-time singularity
formation for a class of hydrodynamic models intermediate between that local
model and the Eulerian hydrodynamics.Comment: REVTEX4, 5 pages, no figures. Introduction rewritten, new material
and references adde
Optimal Scheduling of Multiproduct Pipeline System Using MILP Continuous Approach
Part 5: Planning and Scheduling; International audience; To date, the multiproduct pipeline transportation mode has nationally and internationally considerably evolved thanks to his efficiently and effectively of transporting several products. In this paper, we focus our study on the scheduling of a multiproduct pipeline system that receives a number of petroleum products (fuels) from a single refinery source in order to be distributed to several storage and distribution centers (depots). Mixed Integer Linear Programming (MILP) continuous mathematical approach is presented to solve this problem. The sequence of injected products in the same pipeline should be carefully studied, in order to meet market demands and ensure storage autonomy of the marketable pure products in the fuels depots on the one hand and to minimize the number of interfaces; Birth zone of mixture between two products in contact and in sequential flow, which may hinder the continuous operation of the pipeline system, by the necessity of additional storage capacity for this last mixture, that is in no way marketable and requires special processing operations. This work is applied on a real case of a multiproduct pipeline that feeds the western and southwestern region of Algeria with fuels. The obtained results based on the MILP continuous approach give an optimal scheduling of the multiproduct transport system with a minimized number of interfaces.
Document type: Conference objec
Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase
The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC–ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.National Institute of General Medical Sciences (U.S.) (5-R01-GM032134)United States. National Institutes of Health (T32GM008334
Recommended from our members
Environmental justice and conceptions of the green economy
Green economy has become one of the most fashionable terms in global environmental public policy discussions and forums. Despite this popularity, and its being selected as one of the organizing themes of the United Nations Rio+20 Conference in Brazil, June 2012, its prospects as an effective mobilization tool for global environmental sustainability scholarship and practice remains unclear. A major reason for this is that much like its precursor concepts such as environmental sustainability and sustainable development, green economy is a woolly concept which lends itself to many interpretations. Hence, rather than resolve long-standing controversies, green economy merely reinvigorates existing debates over the visions, actors and policies best suited to secure a more sustainable future for all. In this review article, we aim to fill an important gap in scholarship by suggesting various ways in which green economy may be organized and synthesized as a concept, and especially in terms of its relationship with the idea of social and environmental justice. Accordingly, we offer a systemization of possible interpretations of green economy mapped onto a synthesis of existing typologies of environmental justice. This classification provides the context for future analysis of which, and how, various notions of green economy link with various conceptions of justice
Evaluación de formulaciones matemáticas alternativas para la planeación óptima de flotas de vehículos bajo incertidumbre
El dimensionamiento y planeación de flotas de vehículos es un proceso crítico en toda industria que requiera el abastecimiento de materiales y servicios en sitios geográficamente distribuidos. Con frecuencia, la demanda de estas operaciones es incierta y produce serias dificultades en la gestión de contratos y en la asignación eficiente de vehículos para alcanzar los niveles de servicio requeridos a costos razonables. El presente trabajo tiene como objetivo revisar, validar y comparar dos de las principales contribuciones de los últimos años relativas al dimensionamiento y planificación de flotas de vehículos bajo condiciones inciertas [1,2]. Para ello, se proponen casos de estudios de referencia que se resuelven para evaluar el desempeño de ambas formulaciones con el objetivo de delinear conclusiones en torno a sus capacidades. En particular, se establece una comparación exhaustiva de abordajes novedosos mediante programación matemática mixta-entera lineal [1] con los tradicionales enfoques de programación estocástica propuestos en la literatura [2]. En todos los casos, se busca establecer la mejor estrategia de contratación de vehículos, bajo diferentes alternativas de adquisición, y su correspondiente preasignación a servicios con un fuerte carácter aleatorio, con el objetivo de minimizar los costos de contratación e incumplimiento esperado de la demanda. En resumen, la exposición busca brindar lineamientos generales para la adopción de herramientas de planificación de flotas, comparando abordajes modernos (donde el nivel de servicio constituye una variable de decisión de los modelos de optimización), con formulaciones estocásticas afianzadas (en donde las decisiones de primer y segundo nivel se optimizan en torno a valores esperados de demanda). Se establecen importantes conclusiones acerca de la flexibilidad y precisión de cada uno de los enfoques.
[1] Presser, D.J., Cafaro V.G., Cafaro D.C. A Novel Approach for Vehicle Fleet Sizing and Allocation Under Uncertain Demand. 32nd ESCAPE (2022).[2] List G.F., Wood B., Nozick L.K., Turnquist M.A., Jones D.A., Kjeldgaard E., Lawton C.R. Robust optimization for fleet planning under uncertainty. Transportation Research Part E: Logistics and Transportation Review. 39-3 (2003) 209-227
HIV-1 Tat Promotes Kaposi's Sarcoma-Associated Herpesvirus (KSHV) vIL-6-Induced Angiogenesis and Tumorigenesis by Regulating PI3K/PTEN/AKT/GSK-3β Signaling Pathway
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is etiologically associated with KS, the most common AIDS-related malignancy. KS is characterized by vast angiogenesis and hyperproliferative spindle cells. We have previously reported that HIV-1 Tat can trigger KSHV reactivation and accelerate Kaposin A-induced tumorigenesis. Here, we explored Tat promotion of KSHV vIL-6-induced angiogenesis and tumorigenesis. Tat promotes vIL-6-induced cell proliferation, cellular transformation, vascular tube formation and VEGF production in culture. Tat enhances vIL-6-induced angiogenesis and tumorigenesis of fibroblasts and human endothelial cells in a chicken chorioallantoic membrane (CAM) model. In an allograft model, Tat promotes vIL-6-induced tumorigenesis and expression of CD31, CD34, SMA, VEGF, b-FGF, and cyclin D1. Mechanistic studies indicated Tat activates PI3K and AKT, and inactivates PTEN and GSK-3β in vIL-6 expressing cells. LY294002, a specific inhibitor of PI3K, effectively impaired Tat's promotion of vIL-6-induced tumorigenesis. Together, these results provide the first evidence that Tat might contribute to KS pathogenesis by synergizing with vIL-6, and identify PI3K/AKT pathway as a potential therapeutic target in AIDS-related KS patients. © 2013 Zhou et al
- …
