9,477 research outputs found
Orthogonal parallel MCMC methods for sampling and optimization
Monte Carlo (MC) methods are widely used for Bayesian inference and
optimization in statistics, signal processing and machine learning. A
well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms.
In order to foster better exploration of the state space, specially in
high-dimensional applications, several schemes employing multiple parallel MCMC
chains have been recently introduced. In this work, we describe a novel
parallel interacting MCMC scheme, called {\it orthogonal MCMC} (O-MCMC), where
a set of "vertical" parallel MCMC chains share information using some
"horizontal" MCMC techniques working on the entire population of current
states. More specifically, the vertical chains are led by random-walk
proposals, whereas the horizontal MCMC techniques employ independent proposals,
thus allowing an efficient combination of global exploration and local
approximation. The interaction is contained in these horizontal iterations.
Within the analysis of different implementations of O-MCMC, novel schemes in
order to reduce the overall computational cost of parallel multiple try
Metropolis (MTM) chains are also presented. Furthermore, a modified version of
O-MCMC for optimization is provided by considering parallel simulated annealing
(SA) algorithms. Numerical results show the advantages of the proposed sampling
scheme in terms of efficiency in the estimation, as well as robustness in terms
of independence with respect to initial values and the choice of the
parameters
Parallel Metropolis chains with cooperative adaptation
Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) algorithms, have
become very popular in signal processing over the last years. In this work, we
introduce a novel MCMC scheme where parallel MCMC chains interact, adapting
cooperatively the parameters of their proposal functions. Furthermore, the
novel algorithm distributes the computational effort adaptively, rewarding the
chains which are providing better performance and, possibly even stopping other
ones. These extinct chains can be reactivated if the algorithm considers
necessary. Numerical simulations shows the benefits of the novel scheme
Chiral Perturbation Theory, the expansion and Regge behaviour determine the structure of the lightest scalar meson
The leading behaviour of Unitarised Chiral Perturbation Theory
distinguishes the nature of the and the . At one loop order the
is a meson, while the is not. However, semi-local
duality between resonances and Regge behaviour cannot be satisfied for larger
, if such a distinction holds. While the at is inevitably
dominated by its di-pion component, Unitarised Chiral Perturbation Theory
beyond one loop order reveals that as increases above 6-8, the
has a sub-dominant fraction up at 1.2 GeV. Remarkably this ensures
semi-local duality is fulfilled for the range of , where the
unitarisation procedure adopted applies.Comment: 22 pages, 8 figures. Version to be published in Physical Review
Anisotropic pinning enhancement in Nb films with arrays of submicrometric Ni lines
Arrays of submicrometric Ni lines have been fabricated in superconducting Nb films by electron beam lithography. In the mixed state, these arrays induce strong anisotropy in the dissipation behavior. The dissipation is reduced several orders of magnitude, in the whole applied magnetic field range, when the vortex motion is perpendicular to the Ni lines (applied current parallel to them) in comparison with dissipation of vortices moving parallel to the lines. In addition, for the samples studied in this work, a change in the slope of the rho(B) curves is observed when the vortices move perpendicular to the lines and the vortex lattice parameter matches the width of the Ni lines
Limits on WWgamma and WWZ Couplings from W Boson Pair Production
The results of a search for W boson pair production in pbar-p collisions at
sqrt{s}=1.8 TeV with subsequent decay to emu, ee, and mumu channels are
presented. Five candidate events are observed with an expected background of
3.1+-0.4 events for an integrated luminosity of approximately 97 pb^{-1}.
Limits on the anomalous couplings are obtained from a maximum likelihood fit of
the E_T spectra of the leptons in the candidate events. Assuming identical
WWgamma and WWZ couplings, the 95 % C.L. limits are -0.62<Delta_kappa<0.77
(lambda = 0) and -0.53<lambda<0.56 (Delta_kappa = 0) for a form factor scale
Lambda = 1.5 TeV.Comment: 10 pages, 1 figure, submitted to Physical Review
Precise measurement of the top quark mass in the dilepton channel at D0
We measure the top quark mass (mt) in ppbar collisions at a center of mass
energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events,
where l denotes an electron, a muon, or a tau that decays leptonically. The
data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0
detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat)
+- 2.4(syst) GeV, which is in agreement with the current world average mt =
173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the
dilepton channel.Comment: 7 pages, 4 figure
Direct Search for Charged Higgs Bosons in Decays of Top Quarks
We present a search for charged Higgs bosons in decays of pair-produced top
quarks in pbar p collisions at sqrt(s) = 1.8 TeV using 62.2 pb^-1 of data
recorded by the D0 detector at the Fermilab Tevatron collider. No evidence is
found for signal, and we exclude at 95% confidence most regions of the (M
higgs, tan beta) parameter space where the decay t->H b has a branching
fraction greater than 0.36 and B(H -> tau nu) is large.Comment: 11 pages, 4 figures, submitted to Phys. Rev. Let
Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV
We report a search for a narrow ttbar resonance that decays into a
lepton+jets final state based on an integrated luminosity of 5.3/fb of
proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0
Collaboration at the Fermilab Tevatron Collider. We set upper limits on the
production cross section of such a resonance multiplied by its branching
fraction to ttbar which we compare to predictions for a leptophobic topcolor Z'
boson. We exclude such a resonance at the 95% confidence level for masses below
835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter
Search for Electroweak Production of Single Top Quarks in ppbar Collisions
We present a search for electroweak production of single top quarks in the
electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of
data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with
the DZero detector between 1992 and 1995. We use events that include a tagging
muon, implying the presence of a b jet, to set an upper limit at the 95%
confidence level on the cross section for the s-channel process ppbar->tb+X of
39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb.Comment: 11 pages, 2 figures. This is the published versio
- …
