2,128 research outputs found
An earth pole-sitter using hybrid propulsion
In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
Searching for galaxy clusters in the VST-KiDS Survey
We present the methods and first results of the search for galaxy clusters in
the Kilo Degree Survey (KiDS). The adopted algorithm and the criterium for
selecting the member galaxies are illustrated. Here we report the preliminary
results obtained over a small area (7 sq. degrees), and the comparison of our
cluster candidates with those found in the RedMapper and SZ Planck catalogues;
the analysis to a larger area (148 sq. degrees) is currently in progress. By
the KiDS cluster search, we expect to increase the completeness of the clusters
catalogue to z = 0.6-0.7 compared to RedMapper.Comment: 5 pages, 4 figures, to be published in the Proceedings of the
Conference "The Universe of Digital Sky Surveys", Naples, November 25-28 201
Shifting attention in viewer- and object-based reference frames after unilateral brain injury
The aims of the present study were to investigate the respective roles that object- and viewer-based reference frames play in reorienting visual attention, and to assess their influence after unilateral brain injury. To do so, we studied 16 right hemisphere injured (RHI) and 13 left hemisphere injured (LHI) patients. We used a cueing design that manipulates the location of cues and targets relative to a display comprised of two rectangles (i.e., objects). Unlike previous studies with patients, we presented all cues at midline rather than in the left or right visual fields. Thus, in the critical conditions in which targets were presented laterally, reorienting of attention was always from a midline cue. Performance was measured for lateralized target detection as a function of viewer-based (contra- and ipsilesional sides) and object-based (requiring reorienting within or between objects) reference frames. As expected, contralesional detection was slower than ipsilesional detection for the patients. More importantly, objects influenced target detection differently in the contralesional and ipsilesional fields. Contralesionally, reorienting to a target within the cued object took longer than reorienting to a target in the same location but in the uncued object. This finding is consistent with object-based neglect. Ipsilesionally, the means were in the opposite direction. Furthermore, no significant difference was found in object-based influences between the patient groups (RHI vs. LHI). These findings are discussed in the context of reference frames used in reorienting attention for target detection
Coherent states for compact Lie groups and their large-N limits
The first two parts of this article surveys results related to the
heat-kernel coherent states for a compact Lie group K. I begin by reviewing the
definition of the coherent states, their resolution of the identity, and the
associated Segal-Bargmann transform. I then describe related results including
connections to geometric quantization and (1+1)-dimensional Yang--Mills theory,
the associated coherent states on spheres, and applications to quantum gravity.
The third part of this article summarizes recent work of mine with Driver and
Kemp on the large-N limit of the Segal--Bargmann transform for the unitary
group U(N). A key result is the identification of the leading-order large-N
behavior of the Laplacian on "trace polynomials."Comment: Submitted to the proceeding of the CIRM conference, "Coherent states
and their applications: A contemporary panorama.
Galaxy evolution within the Kilo-Degree Survey
The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging
survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS
will scan 1500 square degrees in four optical filters (u, g, r, i). Designed to
be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to
the high spatial resolution of VST, the good seeing and the photometric depth.
The surface photometry have provided with structural parameters (e.g. size and
S\'ersic index), aperture and total magnitudes have been used to derive
photometric redshifts from Machine learning methods and stellar
masses/luminositites from stellar population synthesis. Our project aimed at
investigating the evolution of the colour and structural properties of galaxies
with mass and environment up to redshift and more, to put
constraints on galaxy evolution processes, as galaxy mergers.Comment: 4 pages, 2 figures, to appear on the refereed Proceeding of the "The
Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on
25th-28th november 2014, to be published on Astrophysics and Space Science
Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic
The ultraviolet visibility and quantitative morphology of galactic disks at low and high redshift
We used ultraviolet (200 nm) images of the local spiral galaxies M33, M51,
M81, M100, M101 to compute morphological parameters of galactic disks at this
wavelength : half-light radius , surface brightness distributions,
asymmetries () and concentrations (). The visibility and the evolution
of the morphological parameters are studied as a function of the redshift. The
main results are : local spiral galaxies would be hardly observed and
classified if projected at high redshifts (z 1) unless a strong
luminosity evolution is assumed. Consequently, the non-detection of large
galactic disks cannot be used without caution as a constraint on the evolution
of galatic disks. Spiral galaxies observed in ultraviolet appear more irregular
since the contribution from the young stellar population becomes predominent.
When these galaxies are put in a (log vs. log ) diagram, they move to
the irregul ar sector defined at visible wavelengths. Moreover, the log
parameter is degenerate and cannot be used for an efficient classification of
morphological ultraviolet types. The analysis of high redshift galaxies cannot
be carried out in a reliable way so far and a multi-wavelength approach is
required if one does not want to misinterpret the data.Comment: 12 pages, accepted for publication in A&A on 15 January 200
Galaxy And Mass Assembly (GAMA) : The mechanisms for quiescent galaxy formation at z<1
© 2016 The Authors. One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies.We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8Gyr, the quiescent population has grown more slowly in number density at high masses (M * > 10 11 M ⊙ ) than at intermediate masses (M * > 10 10.6 M ⊙ ). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times.At intermediatemasses (M * > 10 10.6 M ⊙ ), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ~ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z 10 11 M ⊙ ), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation
The EFIGI catalogue of 4458 nearby galaxies with morphology II. Statistical properties along the Hubble sequence
The EFIGI catalogue of 4458 galaxies provides a reference database of the
morphological properties of nearby galaxies, with 16 shape attributes
describing their various dynamical components, their texture and environment,
and with a dense sampling of all Hubble types. This catalogue allows us to
derive a quantitative description of the Hubble Sequence in terms of the
specific morphological features of the various types. The variations of the
EFIGI morphological attributes with type confirm that the visual Hubble
sequence is a decreasing sequence of bulge-to-total ratio and an increasing
sequence of disk contribution to the total flux. There is nevertheless a large
dispersion of approximately 5 types for a given bulge-to-total ratio, due to
the fact that the Hubble sequence is primarily based on the strength and pitch
angle of the spiral arms, independently from the bulge-to-total ratio. The
grand spiral design is also related to a steep decrease in visible dust from
types Sb to Sbc-Sc. In contrast, the scattered and giant HII regions show
different strength variation patterns; hence, they do not appear to directly
participate in the establishment of the Hubble sequence. The distortions from a
symmetric profile also incidentally increase along the sequence. Bars and inner
rings are frequent and occur in 41% and 25% of disk galaxies resp. Outer rings
are twice less frequent than inner rings, and outer pseudo-rings occur in 11%
of barred galaxies. Finally, we find a smooth decrease in mean surface
brightness and intrinsic size along the Hubble sequence. The largest galaxies
are cD, Ellipticals and Sab-Sbc spirals, whereas Sd and later spirals are
nearly twice smaller. S0 are intermediate in size, and Im, cE and dE are
confirmed as small objects. Dwarf spiral galaxies of type Sa to Scd are rare in
the EFIGI catalogue, we only find 2 such objects.Comment: Accepted for publication in Astronomy and Astrophysics, 22 pages, 10
tables, 19 colour figures. Data available at http://www.efigi.or
Coherent states on spheres
We describe a family of coherent states and an associated resolution of the
identity for a quantum particle whose classical configuration space is the
d-dimensional sphere S^d. The coherent states are labeled by points in the
associated phase space T*(S^d). These coherent states are NOT of Perelomov type
but rather are constructed as the eigenvectors of suitably defined annihilation
operators. We describe as well the Segal-Bargmann representation for the
system, the associated unitary Segal-Bargmann transform, and a natural
inversion formula. Although many of these results are in principle special
cases of the results of B. Hall and M. Stenzel, we give here a substantially
different description based on ideas of T. Thiemann and of K. Kowalski and J.
Rembielinski. All of these results can be generalized to a system whose
configuration space is an arbitrary compact symmetric space. We focus on the
sphere case in order to be able to carry out the calculations in a
self-contained and explicit way.Comment: Revised version. Submitted to J. Mathematical Physic
Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information
KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe
- …
