2,756 research outputs found
Reversible viscosity and Navier--Stokes fluids
Exploring the possibility of describing a fluid flow via a time-reversible
equation and its relevance for the fluctuations statistics in stationary
turbulent (or laminar) incompressible Navier-Stokes flows.Comment: 7 pages 6 figures, v2: replaced Fig.6 and few changes. Last version:
appendix cut shorter, because of a computational erro
2-10 keV luminosity of high-mass binaries as a gauge of ongoing star-formation rate
Based on recent work on spectral decomposition of the emission of
star-forming galaxies, we assess whether the integrated 2-10 keV emission from
high-mass X-ray binaries (HMXBs), L_{2-10}^{HMXB}, can be used as a reliable
estimator of ongoing star formation rate (SFR). Using a sample of 46 local (z <
0.1) star forming galaxies, and spectral modeling of ASCA, BeppoSAX, and
XMM-Newton data, we demonstrate the existence of a linear SFR-L_{2-10}^{HMXB}
relation which holds over ~5 decades in X-ray luminosity and SFR. The total
2-10 keV luminosity is not a precise SFR indicator because at low SFR (i.e., in
normal and moderately-starbursting galaxies) it is substantially affected by
the emission of low-mass X-ray binaries, which do not trace the current SFR due
to their long evolution lifetimes, while at very high SFR (i.e., for very
luminous FIR-selected galaxies) it is frequently affected by the presence of
strongly obscured AGNs. The availability of purely SB-powered galaxies - whose
2-10 keV emission is mainly due to HMXBs - allows us to properly calibrate the
SFR-L_{2-10}^{HMXB} relation. The SFR-L_{2-10}^{HMXB} relation holds also for
distant (z ~ 1) galaxies in the Hubble Deep Field North sample, for which we
lack spectral information, but whose SFR can be estimated from deep radio data.
If confirmed by more detailed observations, it may be possible to use the
deduced relation to identify distant galaxies that are X-ray overluminous for
their (independently estimated) SFR, and are therefore likely to hide strongly
absorbed AGNs.Comment: Astronomy & Astrophysics, in press (15 pages, 7 figures, 4 tables
Bifurcations and Chaos in the Six-Dimensional Turbulence Model of Gledzer
The cascade-shell model of turbulence with six real variables originated by
Gledzer is studied numerically using Mathematica 5.1. Periodic, doubly-periodic
and chaotic solutions and the routes to chaos via both frequency-locking and
period-doubling are found by the Poincar\'e plot of the first mode . The
circle map on the torus is well approximated by the summation of several
sinusoidal functions. The dependence of the rotation number on the viscosity
parameter is in accordance with that of the sine-circle map. The complicated
bifurcation structure and the revival of a stable periodic solution at the
smaller viscosity parameter in the present model indicates that the turbulent
state may be very sensitive to the Reynolds number.Comment: 19 pages, 12 figures submitted to JPS
XMM-Newton observations of ULIRGs I: A Compton-thick AGN in IRAS19254-7245
We present the XMM-Newton observation of the merging system IRAS 19254-7245,
also known as The Superantennae, whose southern nucleus is classified as a
Seyfert 2 galaxy. The XMM-Newton data have allowed us to perform a detailed
X-ray imaging and spectral analysis of this system. We clearly detect, for the
first time in this system, a strong EW ~ 1.4 keV Fe emission line at 6.49+/-0.1
keV (rest-frame). The X-ray spectrum requires a soft thermal component (kT~0.9
keV; L(0.5-2) ~ 4E41 cgs), likely associated with the starburst, and a hard
power-law continuum above 2 keV (observed L(2-10) ~ 4E42 cgs). We confirm the
flatness of this latter component, already noted in previous ASCA data. This
flatness, together with the detection of the strong Fe-Kalpha line and other
broad band indicators, suggest the presence of a Compton-thick AGN with
intrinsic luminosity > 1E44 cgs. We show that a Compton-thick model can
perfectly reproduce the X-ray spectral properties of this object.Comment: 6 pages, 4 figures, Latex manuscript, Accepted for publication in
Astronomy and Astrophysic
Impact of IFN lambda 3/4 single nucleotide polymorphisms on the cytomegalovirus reactivation in autologous stem cell transplant patients
Cytomegalovirus (CMV) infection represents one of the main cause mortality after Stem Cell Transplantation. Recently, a protective effect of the T allele of rs12979860 IL28B Single Nucleotide Polymorphisms (SNPs) against CMV infection in the allogenic stem cell transplantation was suggested. We investigate whether the rs12979860 IL28B SNP and the relative rs368234815 (IFNλ4) genotype may affect the incidence of active CMV infection in Autologous stem cell transplantation (Auto-SCT) setting. The study included 99 patients who underwent to Auto-SCT. IL28 and IFNΔ4 SNPs were correlated with CMV reactivation along with other clinical and treatment parameters. CMV reactivation by CMV DNAemia was evaluated once a week until day 100 from Auto-SCT. CMV reactivation was documented in 50% (TT-ΔG/ΔG), 35% (CC-TT/TT) and 29.2% (CT-TT/ΔG) of the patients respectively. No differences in CMV copies number were recorded at reactivation between different IL28/IFNλ4 genotypes. The analysis of patients older than 60 years showed a significantly higher incidence of active CMV infection in the TT-ΔG/ΔG (83%) population with respect to CC-TT/TT (21%) and CT-TT/ΔG (40%) patients. Our data suggest a negative role of TT-ΔG/ΔG genotype in the CMV reactivation in Auto-SCT. The exposure to rituximab and the pre-infusion presence of anti CMV IgG also significantly influenced CMV reactivation
Neural superposition and oscillations in the eye of the blowfly
Neural superposition in the eye of the blowfly Calliphora erythrocephala was investigated by stimulating single photoreceptors using corneal neutralization through water immersion. Responses in Large Monopolar Cells (LMCs) in the lamina were measured, while stimulating one or more of the six photoreceptors connected to the LMC. Responses to flashes of low light intensity on individual photoreceptors add approximately linearly at the LMC. Higher intensity light flashes produce a maximum LMC response to illumination of single photoreceptors which is about half the maximum response to simultaneous illumination of the six connecting photoreceptors. This observation indicates that a saturation can occur at a stage of synaptic transmission which precedes the change in the post-synaptic membrane potential.
Stimulation of single photoreceptors yields high frequency oscillations (about 200 Hz) in the LMC potential, much larger in amplitude than produced by simultaneous stimulation of the six photoreceptors connected to the LMC. It is discussed that these oscillations also arise from a mechanism that precedes the change in the postsynaptic membrane potential.
Revealing the active galactic nucleus in the superantennae through L-band spectroscopy
We present an L-band spectrum of the Ultraluminous Infrared Galaxy IRAS
19254-7245 (the Superantennae), obtained with VLT-ISAAC. The high signal to
noise ratio allows a study of the main spectral features with unprecedented
detail for an extragalactic source. We argue that the main energy source in the
IR is an obscured AGN. This is indicated by the low equivalent width of the 3.3
micron PAH feature, the broad absorption feature at 3.4 um, and the steep
continuum at lambda>3.7 um (f_lambda ~lambda^(2.7)). The substructure of the
3.4 um absorption feature indicates that the absorption is due to hydrocarbon
chains of 6-7 carbon atoms.Comment: 12 pages, 3 figures. ApJ Letters, in pres
Quasar clustering: evidence for an increase with redshift and implications for the nature of AGNs
The evolution of quasar clustering is investigated with a new sample of 388
quasars with 0.3<z<=2.2, B<=20.5 and Mb<-23, selected over an area of 24.6 sq.
deg. in the South Galactic Pole. Assuming a two-point correlation function of
the form xi(r) = (r/r_o)^-1.8, we detect clustering with r_0=6.2 +/- 1.6 h^-1
comoving Mpc at an average redshift of z=1.3. We find a 2 sigma significant
increase of the quasar clustering between z=0.95 and z=1.8, independent of the
quasar absolute magnitude and inconsistent with recent evidence on the
evolution of galaxy clustering. If other quasar samples are added (resulting in
a total data-set of 737 quasars) the increase of the quasar clustering is still
favoured although it becomes less significant. We find epsilon=-2.5.
Evolutionary parameters epsilon>0.0 are excluded at a 0.3% probability level,
to be compared with epsilon=0.8 found for galaxies. The observed clustering
properties appear qualitatively consistent with a scenario of Omega=1 CDM in
which a) the difference between the quasar and the galaxy clustering can be
explained as a difference in the effective bias and redshift distributions, and
b) the quasars, with a lifetime of t~10^8 yr, sparsely sample halos of mass
greater than M_min~10^12-10^13 h^-1 M_sun. We discuss also the possibility that
the observed change in the quasar clustering is due to an increase in the
fraction of early-type galaxies as quasar hosts at high z.Comment: 8 pages including 2 eps figures, LaTeX (AAS v4.0), ApJ in pres
Mid- and Far-infrared Luminosity Functions and Galaxy Evolution from Multiwavelength Spitzer Observations up to z~2.5
[Abridged]We exploit a large homogeneous dataset to derive a self-consistent
picture of IR emission based on the time-dependent 24, 15, 12 and 8micron
monochromatic and bolometric IR luminosity functions (LF) over the 0<z<2.5
redshift range. Our analysis is based on the combination of data from deep
Spitzer surveys in the VVDS-SWIRE and GOODS areas. To our limiting flux of
S(24)=400microJy our derived sample in VVDS-SWIRE includes 1494 sources, and
666 and 904 sources brighter than S(24)=80microJy are catalogued in GOODS-S and
GOODS-N, respectively, for a total area of ~0.9 square degs. We obtain reliable
optical identifications and redshifts, providing us a rich and robust dataset
for our luminosity function determination. Based on the multi-wavelength
information available, we constrain the LFs at 8, 12, 15 and 24micron. We also
extrapolate total IR luminosities from our best-fit to the observed SEDs of
each source, and use this to derive the bolometric LF and comoving volume
emissivity up to z~2.5. In the 0<z<1 interval, the bolometric IR luminosity
density evolves as (1+z)^3.8+/-0.4. Although more uncertain at higher-z, our
results show a flattening of the IR luminosity density at z>1. The mean
redshift of the peak in the source number density shifts with luminosity: the
brighest IR galaxies appear to be forming stars earlier in cosmic time (z>1.5),
while the less luminous ones keep doing it at more recent epochs (z~1 for
L(IR)<10^11L_sun). Our results suggest a rapid increase of the galaxy IR
comoving volume emissivity back to z~1 and a constant average emissivity at
z>1. We also seem to find a difference in the evolution rate of the source
number densities as a function of luminosity, a downsizing evolutionary pattern
similar to that reported from other samples of cosmic sources.Comment: Accepted for pubblicantion in Astronomy and Astrophysic
The Asiago-ESO/RASS QSO Survey. I.The Catalog and the Local QSO Luminosity Function
This paper presents the first results of a survey for bright quasars (V <
14.5 and R30.
The photometric database is derived from the GSC and USNO catalogs. Quasars are
identified on the basis of their X-ray emission measured in the ROSAT All Sky
Survey. The surface density of quasars brighter than 15.5 mag turns out to be
, about 3 times higher than that estimated by
the PG survey. The quasar optical Luminosity Function (LF) at is computed and shown to be consistent with a Luminosity Dependent
Luminosity Evolution of the type derived by La Franca and Cristiani (1997) in
the range . The predictions of semi-analytical models of
hierarchical structure formation agree remarkably well with the present
observations.Comment: 54 pages Latex, with 7 PostScript figures. Some minor changes.
Astronomical Journal, in pres
- …
