77 research outputs found
Deviations From Axisymmetry Revealed by Line Polarization in the Normal Type Ia SN 2004S
We present a single epoch of high signal-to-noise ratio spectropolarimetry of
the Type Ia supernova (SN Ia) 2004S taken nine days after maximum light. The
flux spectrum is normal, but with the additional presence of high-velocity (HV)
line features in both Ca II and Fe II. The object shows continuum polarization
at the 0.4% level in the red, a value which appears to be typical of SNe Ia.
The continuum data are consistent with a ~10% global asphericity in an
axisymmetric geometry. Unlike previous observations of other SNe Ia with HV
features, the HV features in SN 2004S show no strong polarimetric signature,
though this may be due to the timing of our observations. Instead, the object
shows line polarization features (P < 0.5%) that are rotated with respect to
the axis of symmetry of the continuum. The line features are visible in Si II,
Fe II, and Ca II, and appear to be narrowly confined in velocity space just
above the photosphere. These polarization features are a result of
compositional inhomogeneities in the ejecta. They may represent newly
synthesized elements whose clumpy spatial distribution within the ejecta is
distinct from that of the globally aspherical ejecta as a whole.Comment: 25 pages, 6 figures, AJ, minor revisions to match accepted journal
versio
Signature of Electron Capture in Iron-Rich Ejecta of SN 2003du
Late-time near-infrared and optical spectra are presented for the
normal-bright SN2003du. At about 300 days after the explosion, the emission
profiles of well isolated [FeII] lines (in particular that of the strong
1.644mu feature) trace out the global kinematic distribution of radioactive
material in the expanding. In SN2003du, the 1.644 mu [FeII] line shows a
flat-topped, profile, indicative of a thick but hollow-centered expanding
shell, rather than a strongly-peaked profile that would be expected from a
``center-filled'' distribution.Based on detailed models for exploding
Chandrasekhar mass white dwarfs, we show that the feature is consistent with
spherical explosion models.Our model predicts central region of non-radioactive
electron-capture elements up to 2500--3000km/s as a consequence of burning
under high density, and an extended region of 56Ni up to 9,000--10,000km/s.
Furthermore our analysis indicates that the 1.644mu [FeII] profile is not
consistent with strong mixing between the regions of electron- capture isotopes
and the 56Ni layers as is predicted by detailed 3D models for nuclear
deflagration fronts. We discuss the possibility that the flat-topped profile
could be produced as a result of an infrared catastrophe and conclude that such
an explanation is unlikely. We put our results in context to other SNeIa and
briefly discuss the implications of our result for the use of SNe Ia as
cosmological standard candles.Comment: 12 pages + 8 figures, ApJ (in press, Dec. 20, 2004) For high
resolution figures send E-mail to [email protected]
A low energy core-collapse supernova without a hydrogen envelope
The final fate of massive stars depends on many factors, including mass,
rotation rate, magnetic fields and metallicity. Theory suggests that some
massive stars (initially greater than 25-30 solar masses) end up as Wolf-Rayet
stars which are deficient in hydrogen because of mass loss through strong
stellar winds. The most massive of these stars have cores which may form a
black hole and theory predicts that the resulting explosion produces ejecta of
low kinetic energy, a faint optical display and a small mass fraction of
radioactive nickel(1,2,3). An alternative origin for low energy supernovae is
the collapse of the oxygen-neon core of a relatively lowmass star (7-9 solar
masses) through electron capture(4,5). However no weak, hydrogen deficient,
core-collapse supernovae are known. Here we report that such faint, low energy
core-collapse supernovae do exist, and show that SN2008ha is the faintest
hydrogen poor supernova ever observed. We propose that other similar events
have been observed but they have been misclassified as peculiar thermonuclear
supernovae (sometimes labelled SN2002cx-like events(6)). This discovery could
link these faint supernovae to some long duration gamma-ray bursts. Extremely
faint, hydrogen-stripped core-collapse supernovae have been proposed to produce
those long gamma-ray bursts whose afterglows do not show evidence of
association with supernovae (7,8,9).Comment: Submitted 12 January 2009 - Accepted 24 March 200
The early spectral evolution of SN 2004dt
Aims. We study the optical spectroscopic properties of Type Ia Supernova (SN
Ia) 2004dt, focusing our attention on the early epochs.
Methods. Observation triggered soon after the SN 2004dt discovery allowed us
to obtain a spectrophotometric coverage from day -10 to almost one year (~353
days) after the B band maximum. Observations carried out on an almost daily
basis allowed us a good sampling of the fast spectroscopic evolution of SN
2004dt in the early stages. To obtain this result, low-resolution, long-slit
spectroscopy was obtained using a number of facilities.
Results. This supernova, which in some absorption lines of its early spectra
showed the highest degree of polarization ever measured in any SN Ia, has a
complex velocity structure in the outer layers of its ejecta. Unburnt oxygen is
present, moving at velocities as high as ~16,700 km/s, with some
intermediate-mass elements (Mg, Si, Ca) moving equally fast. Modeling of the
spectra based on standard density profiles of the ejecta fails to reproduce the
observed features, whereas enhancing the density of outer layers significantly
improves the fit. Our analysis indicates the presence of clumps of
high-velocity, intermediate-mass elements in the outermost layers, which is
also suggested by the spectropolarimetric data.Comment: 13 pages, 15 figures, accepted for pubblication in Astronomy and
Astrophysic
Carbon Detection in Early-Time Optical Spectra of Type Ia Supernovae
While O is often seen in spectra of Type Ia supernovae (SNe Ia) as both
unburned fuel and a product of C burning, C is only occasionally seen at the
earliest times, and it represents the most direct way of investigating
primordial white dwarf material and its relation to SN Ia explosion scenarios
and mechanisms. In this paper, we search for C absorption features in 188
optical spectra of 144 low-redshift (z < 0.1) SNe Ia with ages <3.6 d after
maximum brightness. These data were obtained as part of the Berkeley SN Ia
Program (BSNIP; Silverman et al. 2012) and represent the largest set of SNe Ia
in which C has ever been searched. We find that ~11 per cent of the SNe studied
show definite C absorption features while ~25 per cent show some evidence for C
II in their spectra. Also, if one obtains a spectrum at t < -5 d, then there is
a better than 30 per cent chance of detecting a distinct absorption feature
from C II. SNe Ia that show C are found to resemble those without C in many
respects, but objects with C tend to have bluer optical colours than those
without C. The typical expansion velocity of the C II {\lambda}6580 feature is
measured to be 12,000-13,000 km/s, and the ratio of the C II {\lambda}6580 to
Si II {\lambda}6355 velocities is remarkably constant with time and among
different objects with a median value of ~1.05. While the pseudo-equivalent
widths (pEWs) of the C II {\lambda}6580 and C II {\lambda}7234 features are
found mostly to decrease with time, we see evidence of a significant increase
in pEW between ~12 and 11 d before maximum brightness, which is actually
predicted by some theoretical models. The range of pEWs measured from the BSNIP
data implies a range of C mass in SN Ia ejecta of about (2-30) * 10^-3 M_Sun.Comment: 20 pages, 11 figures, 4 tables, revised version re-submitted to MNRA
Thermonuclear Supernovae: Simulations of the Deflagration Stage and Their Implications
Large-scale three-dimensional numerical simulations of the deflagration stage
of a thermonuclear supernova explosion show the formation and evolution of a
highly convoluted turbulent flame in a gravitational field of an expanding
carbon-oxygen white dwarf. The flame dynamics is dominated by the
gravity-induced Rayleigh-Taylor instability that controls the burning rate. The
thermonuclear deflagration releases enough energy to produce a healthy
explosion. The turbulent flame, however, leaves large amounts of unburnt and
partially burnt material near the star center, whereas observations imply these
materials only in outer layers. This disagreement could be resolved if the
deflagration triggers a detonation.Comment: 17 pages, 5 figures. To appear in Science, January 200
Two transitional type~Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv
We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by dm_15(B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by ~0.60 mag and ~0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by ~14% and ~9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B-V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B-V color evolution along the Lira regime suggests the progenitor of SN~2011iv had a higher central density than SN~2007on
Type Ia Supernovae as Stellar Endpoints and Cosmological Tools
Empirically, Type Ia supernovae are the most useful, precise, and mature
tools for determining astronomical distances. Acting as calibrated candles they
revealed the presence of dark energy and are being used to measure its
properties. However, the nature of the SN Ia explosion, and the progenitors
involved, have remained elusive, even after seven decades of research. But now
new large surveys are bringing about a paradigm shift --- we can finally
compare samples of hundreds of supernovae to isolate critical variables. As a
result of this, and advances in modeling, breakthroughs in understanding all
aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version.
Shortened, update
Parallel chemistry acceleration algorithm with ISAT table-size control in the application of gaseous detonation
In order to improve the computational efficiency of a parallel ISAT (in situ adaptive tabulation)-based chemistry acceleration algorithm in the computations of transient, chemically reacting flows, a control strategy is proposed to maintain the sizes of the data tables in the ISAT computations. The table-size control strategy is then combined with a parallel algorithm to simulate two-dimensional gaseous detonation wave propagation. In the computation of 2H2 + O2 detonation, two sets of tests are conducted to identify the size control strategy. In the first set, the maximum total table size (Mtot) summed over all sub-zones is fixed, while the maximum size of the table on each sub-zone (Msin) is varied. In the second set, a fixed Msin is used for all the tables on the sub-zones while Mtot is varied. A maximum speedup ratio of 4.29 is found in the former tests, while 5.52 is found in the latter. Two parameters, σf and p, are proposed to analyze the load balance and synchronization among table operations in the parallel ISAT computations in the above tests. It is found that both load balance and synchronization have clear influences on the speedup ratio. A parameter pM is defined, and a strategy to choose the optimal maximum table sizes (both Mtot and Msin) based on pM is proposed and is verified to be universal in the computations of both 2H2 + O2 detonation and C2H4 + 3O2 detonation. Finally, the parallel acceleration algorithm enhanced with table-size control is shown to be highly accurate for the detonations in both fuels
- …
