40,088 research outputs found

    Experimental study of a photon as a subsystem of an entangled two-photon state

    Full text link
    The state of the signal-idler photon pair of spontaneous parametric down conversion(SPDC) is a typical nonlocal entangled pure state with zero entropy. The precise correlation of the subsystems is completely described by the state. However, it is an experimental choice to study only one subsystem and to ignore the other. What can we learn about the measured subsystem and the remaining parts? Results of this kind of measurements look peculiar. The experiment confirms that the two subsystems are both in mixed states with entropy greater than zero. One can only obtain statistical knowledge of the subsystems in this kind of measurement.Comment: 14 pages, 2 eps figure

    Rapidly Rotating Fermi Gases

    Full text link
    We show that the density profile of a Fermi gas in rapidly rotating potential will develop prominent features reflecting the underlying Landau level like energy spectrum. Depending on the aspect ratio of the trap, these features can be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil

    Multiple Radial Cool Molecular Filaments in NGC 1275

    Full text link
    We have extended our previous observation (Lim et al. 2008) of NGC1275 covering a central radius of ~10kpc to the entire main body of cool molecular gas spanning ~14kpc east and west of center. We find no new features beyond the region previously mapped, and show that all six spatially-resolved features on both the eastern and western sides (three on each side) comprise radially aligned filaments. Such radial filaments can be most naturally explained by a model in which gas deposited "upstream" in localized regions experiencing an X-ray cooling flow subsequently free falls along the gravitational potential of PerA, as we previously showed can explain the observed kinematics of the two longest filaments. All the detected filaments coincide with locally bright Halpha features, and have a ratio in CO(2-1) to Halpha luminosity of ~1e-3; we show that these filaments have lower star formation efficiencies than the nearly constant value found for molecular gas in nearby normal spiral galaxies. On the other hand, some at least equally luminous Halpha features, including a previously identified giant HII region, show no detectable cool molecular gas with a corresponding ratio at least a factor of ~5 lower; in the giant HII region, essentially all the pre-existing molecular gas may have been converted to stars. We demonstrate that all the cool molecular filaments are gravitationally bound, and without any means of support beyond thermal pressure should collapse on timescales ~< 1e6yrs. By comparison, as we showed previously the two longest filaments have much longer dynamical ages of ~1e7yrs. Tidal shear may help delay their collapse, but more likely turbulent velocities of at least a few tens km/s or magnetic fields with strengths of at least several ~10uG are required to support these filaments.Comment: 52 pages, 11 figures. Accepted to Ap
    corecore