335 research outputs found
The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra
We present novel evidence for a fine structure observed in the net-circular
polarization (NCP) of a sunspot penumbra based on spectropolarimetric
measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first
time we detect a filamentary organized fine structure of the NCP on spatial
scales that are similar to the inhomogeneities found in the penumbral flow
field. We also observe an additional property of the visible NCP, a
zero-crossing of the NCP in the outer parts of the center-side penumbra, which
has not been recognized before. In order to interprete the observations we
solve the radiative transfer equations for polarized light in a model penumbra
with embedded magnetic flux tubes. We demonstrate that the observed
zero-crossing of the NCP can be explained by an increased magnetic field
strength inside magnetic flux tubes in the outer penumbra combined with a
decreased magnetic field strength in the background field. Our results strongly
support the concept of the uncombed penumbra
Boosting clinical performance: The impact of enhanced final year placements.
BACKGROUND: This study follows on from a study that investigated how to develop effective final year medical student assistantship placements, using multidisciplinary clinical teams in planning and delivery. AIMS: This study assessed the effects on objective structured clinical examination (OSCE) performance of the in-course enhanced "super-assistantship" placement introduced to a randomly selected sample of 2013-14 final year medical students at Leeds medical school. METHODS: Quantitative data analysis was used to compare the global grades of OSCE stations between students who undertook this placement against those who did not. RESULTS: There was a small overall improvement in the "super-assistantship" student scores across the whole assessment (effect size = 0.085). "Pre-op Capacity", "Admissions Prescribing" and "Hip Pain" stations had small-medium effect sizes (0.226, 0.215, and 0.214) in favor of the intervention group. Other stations had small effect sizes (0.107-0.191), mostly in favor of the intervention group. CONCLUSIONS: The "super-assistantship" experience characterized by increasing student responsibility on placement can help to improve competence and confidence in clinical decision-making "in a simulated environment". The clinical environment and multidisciplinary team must be ready and supported to provide these opportunities effectively. Further in-course opportunities for increasing final year student responsibility should be developed
Experiments with a Malkus-Lorenz water wheel: Chaos and Synchronization
We describe a simple experimental implementation of the Malkus-Lorenz water
wheel. We demonstrate that both chaotic and periodic behavior is found as wheel
parameters are changed in agreement with predictions from the Lorenz model. We
furthermore show that when the measured angular velocity of our water wheel is
used as an input signal to a computer model implementing the Lorenz equations,
high quality chaos synchronization of the model and the water wheel is
achieved. This indicates that the Lorenz equations provide a good description
of the water wheel dynamics.Comment: 12 pages, 7 figures. The following article has been accepted by the
American Journal of Physics. After it is published, it will be found at
http://scitation.aip.org/ajp
Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
We present a method for tracking and predicting the propagation and evolution
of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO
satellites. By empirically modeling the material between the inner core and
leading edge of a CME as an expanding, outward propagating ellipsoid, we track
its evolution in three-dimensional space. Though more complex empirical CME
models have been developed, we examine the accuracy of this relatively simple
geometric model, which incorporates relatively few physical assumptions,
including i) a constant propagation angle and ii) an azimuthally symmetric
structure. Testing our ellipsoid model developed herein on three separate CMEs,
we find that it is an effective tool for predicting the arrival of density
enhancements and the duration of each event near 1 AU. For each CME studied,
the trends in the trajectory, as well as the radial and transverse expansion
are studied from 0 to ~.3 AU to create predictions at 1 AU with an average
accuracy of 2.9 hours.Comment: 18 pages, 11 figure
Influence of phase-diversity image reconstruction techniques on circular polarization asymmetries
Full Stokes filter-polarimeters are key instruments for investigating the
rapid evolution of magnetic structures on the solar surface. To this end, the
image quality is routinely improved using a-posteriori image reconstruction
methods. We analyze the robustness of circular polarization asymmetries to
phase-diversity image reconstruction techniques. We use snapshots of
magneto-hydrodynamical simulations carried out with different initial
conditions to synthesize spectra of the magnetically sensitive Fe I line at
5250.2 A. We degrade the synthetic profiles spatially and spectrally to
simulate observations with the IMaX full Stokes filter-polarimeter. We also
simulate the focused/defocused pairs of images used by the phase-diversity
algorithm for reconstruction and the polarimetric modulation scheme. We assume
that standard optimization methods are able to infer the projection of the
wavefront on the Zernike polynomials with 10% precision. We also consider the
less favorable case of 25% precision. We obtain reconstructed monochromatic
modulated images that are later demodulated and compared with the original
maps. Although asymmetries are often difficult to define in the quiet Sun due
to the complexity of the Stokes V profiles, we show how asymmetries are
degraded with spatial and spectral smearing. The results indicate that,
although image reconstruction techniques reduce the spatial smearing, they can
modify the asymmetries of the profiles, mainly caused by the appearance of
spatially-correlated noise.Comment: 10 pages, accepted for publication in A&
SST/CRISP Observations of Convective Flows in a Sunspot Penumbra
Context. Recent discoveries of intensity correlated downflows in the interior
of a sunspot penumbra provide direct evidence for overturning convection,
adding to earlier strong indications of convection from filament dynamics
observed far from solar disk center, and supporting recent simulations of
sunspots.
Aims. Using spectropolarimetric observations obtained at a spatial resolution
approaching 0'.'1 with the Swedish 1-m Solar Telescope (SST) and its
spectropolarimeter CRISP, we investigate whether the convective downflows
recently discovered in the C i line at 538.03 nm can also be detected in the
wings of the Fe i line at 630.15 nm
Methods. We make azimuthal fits of the measured LOS velocities in the core
and wings of the 538 nm and 630 nm lines to disentangle the vertical and
horizontal flows. To investigate how these depend on the continuum intensity,
the azimuthal fits are made separately for each intensity bin. By using
spatially high-pass filtered measurements of the LOS component of the magnetic
field, the flow properties are determined separately for magnetic spines
(relatively strong and vertical field) and inter-spines (weaker and more
horizontal field).
Results. The dark convective downflows discovered recently in the 538.03 nm
line are evident also in the 630.15 nm line, and have similar strength. This
convective signature is the same in spines and inter-spines. However, the
strong radial (Evershed) outflows are found only in the inter-spines.
Conclusions. At the spatial resolution of the present SST/CRISP data, the
small-scale intensity pattern seen in continuum images is strongly related to a
convective up/down flow pattern that exists everywhere in the penumbra. Earlier
failures to detect the dark convective downflows in the interior penumbra can
be explained by inadequate spatial resolution in the observed data.Comment: Revised and expanded by 2.5 pages. Fig. 14 adde
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
Endomicroscopic and transcriptomic analysis of impaired barrier function and malabsorption in environmental enteropathy
Introduction: Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods: We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results: CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions: Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE
Recommended from our members
The role of attachment in body weight gain and weight loss in bariatric patients
Purpose: To explore the role of attachment styles in obesity.
Material and methods: The present study explored differences in insecure attachment styles between an obese sample waiting for bariatric surgery (n=195) and an age, sex and height matched normal weight control group (n=195). It then explored the role of attachment styles in predicting change in BMI one year post bariatric surgery (n=143).
Results: The bariatric group reported significantly higher levels of anxious attachment and lower levels of avoidant attachment than the control non obese group. Baseline attachment styles did not, however, predict change in BMI post-surgery.
Conclusion: Attachment style is different in those that are already obese from those who are not. Attachment was not related to weight loss post-surgery
Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals
- …
