542 research outputs found
About the Romanian Tourism Potential: The Natural Strengths of the Main Tourist Destinations
The tourism industry plays a more and more important role in the world economy, and is generally acknowledged to represent a significant source of economic growth for the European Union (EU), as well as for our country. In order to highlight the Romanian tourism potential and the necessity to turn this potential into actual sources of income for the national economy this paper presents a few aspects of the evolution’s tourism in Europe and Romania, also some particularities of the main Romanian tourist destinations. The paper aims to reveal those “natural strengths” that provide the basis for both diversification and differentiation the Romanian tourism offer so as to satisfy the various requirements of the tourists and to compete successfully in the different segments of the international tourism market.
Mandatory multidisciplinary approach for the evaluation of the lymph node status in rectal cancer
Colorectal cancer is the third most frequently reported malignancy and also the third leading cancer-related cause of death worldwide. Lymph node evaluation, both preoperatively and postoperatively, represents an important aspect of the diagnosis and therapeutic strategy in colorectal cancer, such that an accurate preoperative staging is required for a correct therapeutic strategy. Treatment of rectal cancer with positive lymph nodes, a very important predictive prognostic parameter, is currently based on neoadjuvant chemoradiotherapy followed by total/ surgical mesorectal excision and adjuvant regimen.
Preoperative evaluation of the lymph node status in rectal cancer is based on endoscopic ultrasound and magnetic resonance imaging, but their accuracy, specificity, and sensitivity still require improvement. Postoperative evaluation also presents points of debate, especially related to the role of sentinel lymph node mapping and their final implication, represented by detection of micrometastases and isolated tumor cells. The pathologic interpretation of tumor deposits represents other points in discussion. From a surgical perspective, extended lateral lymph node dissection vs. abstinence and (neo)adjuvant therapeutic approach represent another unresolved issue.
This review presents the major controversies existing today in the treatment and pathologic interpretation of the lymph nodes in rectal cancer, the role/ indication and value of the lateral pelvic lymph node dissection, and the postoperative interpretation of the value of the micrometastatic disease and tumor deposits
SiPM and front-end electronics development for Cherenkov light detection
The Italian Institute of Nuclear Physics (INFN) is involved in the
development of a demonstrator for a SiPM-based camera for the Cherenkov
Telescope Array (CTA) experiment, with a pixel size of 66 mm. The
camera houses about two thousands electronics channels and is both light and
compact. In this framework, a R&D program for the development of SiPMs suitable
for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different
photosensors have been produced at Fondazione Bruno Kessler (FBK), with
different micro-cell dimensions and fill factors, in different geometrical
arrangements. At the same time, INFN is developing front-end electronics based
on the waveform sampling technique optimized for the new NUV SiPM. Measurements
on 11 mm, 33 mm, and 66 mm NUV SiPMs
coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera
In October 2013, the Italian Ministry approved the funding of a Research &
Development (R&D) study, within the "Progetto Premiale TElescopi CHErenkov made
in Italy (TECHE)", devoted to the development of a demonstrator for a camera
for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists
of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on
an electronics designed for signal sampling. Preliminary tests on a matrix of
sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on
electronic prototypes produced by SITAEL S.p.A. will be presented. In
particular, we used different designs of the electronics in order to optimize
the output signals in terms of tail cancellation. This is crucial for
applications where a high background is expected, as for the CTA experiment.Comment: 5 pages, 6 figures; Proceedings of the 10th Workshop on Science with
the New Generation of High-Energy Gamma-ray experiments (SciNeGHE) -
PoS(Scineghe2014)00
Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data
The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector
designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy
range, as well as cosmic-ray proton and nuclei components between 10 GeV and
100 TeV. The silicon-tungsten tracker-converter is a crucial component of
DAMPE. It allows the direction of incoming photons converting into
electron-positron pairs to be estimated, and the trajectory and charge (Z) of
cosmic-ray particles to be identified. It consists of 768 silicon micro-strip
sensors assembled in 6 double layers with a total active area of 6.6 m.
Silicon planes are interleaved with three layers of tungsten plates, resulting
in about one radiation length of material in the tracker. Internal alignment
parameters of the tracker have been determined on orbit, with non-showering
protons and helium nuclei. We describe the alignment procedure and present the
position resolution and alignment stability measurements
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
- …
