9 research outputs found
An Agricultural Irrigatıon Management System Based on the Internet of Things With MQTT Protocol
Abstract
There are several factors upon which the yield of a crop depends. Water, external temperature, humidity, the fertility of the soil, etc. Among these, water is a vital and scarce resource, and thereby more human attention is needed. When and how to water the plants are the two important things to consider in agricultural irrigation! Modernizing agriculture with the help of smart technologies is a promising solution. This project presents an automated irrigation system for agriculture-based out of several low-cost sensors that monitor and maintain the soil moisture based on real-time data from the field with very low form factor compared to the existing systems. This automated system is a combination of low-cost hardware, IoT, and cloud server. The ESP8266 MCU installed in the field will collect all the sensor data from the crops and send it to the cloud server, thingspeak, for storage via Wi-Fi. The farmers can monitor the stored or real-time data on their mobile or in a web portal. They can also check the status of the pump at any time from anywhere. The amount of moisture required for a specific type of crop is predetermined and saved in the system thereby human presence can be decreased and can effectively make the system automated.</jats:p
A Review of Potential Agents for Colon Cancer Interception in FAP Patients: Evidence from Preclinical Studies in APCMin/+ Mice
Colorectal cancer (CRC) is one of the major reasons for cancer-related deaths around the world. Constitutive activation of WNT pathway, due to APC gene mutation, is the characteristic feature of most human colon tumors. Familial adenomatous polyposis (FAP) patients inherit APC mutations and pose an absolute risk of developing CRC in their lifetime. The genetically modified APC mouse models have paved the way to study various aspects of the hereditary human CRC, including biochemical, molecular, and histological aspects. Preclinical and clinical data suggest that certain dietary supplements, NSAIDs, natural products, and chemically synthesized compounds, can help in intercepting CRC incidence and progression by modulating various hallmarks of cancer. In this review, we have provided a summary of promising natural and synthetic agents that demonstrated chemopreventive efficacy against CRC in the FAP-mimicking APCMin/+ mouse model
Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis
Chromatin Remodulator CHD4: A Potential Target for Cancer Interception
Cancer initiation and progression are associated with numerous somatic mutations, genomic rearrangements, and structure variants. The transformation of a normal cell into a cancer cell involves spatio-temporal changes in the regulation of different gene networks. The accessibility of these genes within the cell nucleus is manipulated via nucleosome remodeling ATPases, comprising one of the important mechanisms. Here, we reviewed studies of an ATP-dependent chromatin remodulator, chromodomain helicase DNA-binding 4 (CHD4), in cancer. Multiple domains of CHD4 are known to take part in nucleosome mobilization and histone binding. By binding with other proteins, CHD4 plays a vital role in transcriptional reprogramming and functions as a key component of Nucleosome Remodeling and Deacetylase, or NuRD, complexes. Here, we revisit data that demonstrate the role of CHD4 in cancer progression, tumor cell proliferation, DNA damage responses, and immune modulation. Conclusively, CHD4-mediated chromatin accessibility is essential for transcriptional reprogramming, which in turn is associated with tumor cell proliferation and cancer development
Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis
Advanced Control Strategies for the Grid Integration of Wind Energy System Employed with Battery Units
Chemoprevention of Colon Cancer by DFMO, Sulindac, and NO-Sulindac Administered Individually or in Combinations in F344 Rats
Non-steroidal anti-inflammatory drugs (NSAIDs) are promising colorectal cancer (CRC) chemopreventive drugs; however, to overcome NSAIDs’ associated side effects, there is a need to develop safer and efficacious approaches. The present study was designed to evaluate (i) the efficacy of nitric-oxide releasing (NO)-Sulindac as compared to Sulindac; (ii) whether NO-Sulindac is superior to Sulindac in enhancing low-dose difluoromethylornithine (DFMO)-induced chemopreventive efficacy, and (iii) assessing the key biomarkers associated with colon tumor inhibition by these combinations. In F344 rats, colonic tumors were induced by azoxymethane (AOM). At the adenoma stage (13 weeks post AOM), groups of rats were fed the experimental diets containing 0 ppm, 500 ppm DFMO, 150 ppm Sulindac, and 200 ppm NO-Sulindac, individually or in combinations, for 36 weeks. Colon tumors were evaluated histopathologically and assayed for expression levels of proliferative, apoptotic, and inflammatory markers. Results suggest that (except for NO-Sulindac alone), DFMO, Sulindac individually, and DFMO combined with Sulindac or NO-Sulindac significantly suppressed AOM-induced adenocarcinoma incidence and multiplicities. DFMO and Sulindac suppressed adenocarcinoma multiplicity by 63% (p < 0.0001) and 51% (p < 0.0011), respectively, whereas NO-Sulindac had a modest effect (22.8%, p = 0.09). Combinations of DFMO plus Sulindac or NO-Sulindac suppressed adenocarcinoma incidence (60%, p < 0.0001; 50% p < 0.0004), and multiplicity (81%, p < 0.0001; 62%, p < 0.0001). Rats that were fed the combination of DFMO plus Sulindac showed significant inhibition of tumor cell proliferation and induction of apoptosis. In addition, enhancement of p21, Bax, and caspases; downregulation of Ki-67, VEGF, and β-catenin; and modulation of iNOS, COX-2, and ODC activities in colonic tumors were observed. These observations show that a lower-dose of DFMO and Sulindac significantly enhanced CRC chemopreventive efficacy when compared to NO-Sulindac alone, and the combination of DFMO and NO-Sulindac was modestly efficacious as compared to DFMO alone
