2,870 research outputs found
Incremental planning to control a blackboard-based problem solver
To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network
Emerging communities of child-healthcare practice in the management of long-term conditions such as chronic kidney disease: Qualitative study of parents' accounts
Background: Parents of children and young people with long-term conditions who need to deliver clinical care to their child at home with remote support from hospital-based professionals, often search the internet for care-giving information. However, there is little evidence that the information available online was developed and evaluated with parents or that it acknowledges the communities of practice that exist as parents and healthcare professionals share responsibility for condition management. Methods. The data reported here are part of a wider study that developed and tested a condition-specific, online parent information and support application with children and young people with chronic-kidney disease, parents and professionals. Semi-structured interviews were conducted with 19 fathers and 24 mothers who had recently tested the novel application. Data were analysed using Framework Analysis and the Communities of Practice concept. Results: Evolving communities of child-healthcare practice were identified comprising three components and several sub components: (1) Experiencing (parents making sense of clinical tasks) through Normalising care, Normalising illness, Acceptance & action, Gaining strength from the affected child and Building relationships to formalise a routine; (2) Doing (Parents executing tasks according to their individual skills) illustrated by Developing coping strategies, Importance of parents' efficacy of care and Fear of the child's health failing; and (3) Belonging/Becoming (Parents defining task and group members' worth and creating a personal identity within the community) consisting of Information sharing, Negotiation with health professionals and Achieving expertise in care. Parents also recalled factors affecting the development of their respective communities of healthcare practice; these included Service transition, Poor parent social life, Psycho-social affects, Family chronic illness, Difficulty in learning new procedures, Shielding and avoidance, and Language and cultural barriers. Health care professionals will benefit from using the communities of child-healthcare practice model when they support parents of children with chronic kidney disease. Conclusions: Understanding some of the factors that may influence the development of communities of child-healthcare practice will help professionals to tailor information and support for parents learning to manage their child's healthcare. Our results are potentially transferrable to professionals managing the care of children and young people with other long-term conditions. © 2014 Carolan et al.; licensee BioMed Central Ltd
An extended view of the Pisces Overdensity from the SCUSS survey
SCUSS is a u-band photometric survey covering about 4000 square degree of the
South Galactic Cap, reaching depths of up to 23 mag. By extending around 1.5
mag deeper than SDSS single-epoch u data, SCUSS is able to probe much a larger
volume of the outer halo, i.e. with SCUSS data blue horizontal branch (BHB)
stars can trace the outer halo of the Milky Way as far as 100-150 kpc.
Utilizing this advantage we combine SCUSS u band with SDSS DR9 gri photometric
bands to identify BHB stars and explore halo substructures. We confirm the
existence of the Pisces overdensity, which is a structure in the outer halo (at
around 80 kpc) that was discovered using RR Lyrae stars. For the first time we
are able to determine its spatial extent, finding that it appears to be part of
a stream with a clear distance gradient. The stream, which is ~5 degrees wide
and stretches along ~25 degrees, consists of 20-30 BHBs with a total
significance of around 6sigma over the background. Assuming we have detected
the entire stream and that the progenitor has fully disrupted, then the number
of BHBs suggests the original system was similar to smaller classical or a
larger ultra-faint dwarf galaxy. On the other hand, if the progenitor still
exists, it can be hunted for by reconstructing its orbit from the distance
gradient of the stream. This new picture of the Pisces overdensity sheds new
light on the origin of this intriguing system.Comment: 8 pages, 4 figures, accepted by Ap
Exploring the Accuracy of the North American Mesoscale Model during Low-Level Jet Influenced Convection in Iowa
This study analyzed low-level jet (LLJ) influenced overnight convection cases over Iowa. There are two main regimes for LLJ development over the Great Plains. One is when there is an upper-level trough in the western United States, while the other is dominated by an upper-level anticyclone. The forecasts of the twelve kilometer North American Mesoscale model (NAM) were analyzed for accuracy in both regimes and overall. The variables examined were the LLJ peak magnitude, timing, location, and total rainfall produced in Iowa from 0000UTC-1200UTC the day of an event. Although weak underforecasting was found regarding the magnitude of the LLJ with both models, there were no significant shortfalls regarding magnitude, timing, or location for either regime. However, the model runs significantly underforecasted the magnitude and area of rainfall, as all but one model run produced a rainfall maximum that was underforecasted in both LLJ regimes
The Morphology - Density Relation in z ~ 1 Clusters
We measure the morphology--density relation (MDR) and morphology-radius
relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed
with the Advanced Camera for Surveys on board the Hubble Space Telescope.
Simulations and independent comparisons of ourvisually derived morphologies
indicate that ACS allows one to distinguish between E, S0, and spiral
morphologies down to zmag = 24, corresponding to L/L* = 0.21 and 0.30 at z =
0.83 and z = 1.24, respectively. We adopt density and radius estimation methods
that match those used at lower redshift in order to study the evolution of the
MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that
observed at z ~ 0, consistent with recent work -- specifically, the growth in
the bulge-dominated galaxy fraction, f_E+SO, with increasing density proceeds
less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and density <= 500
galaxies/Mpc^2, we find = 0.72 +/- 0.10. At z ~ 0, an E+S0 population
fraction of this magnitude occurs at densities about 5 times smaller. The
evolution in the MDR is confined to densities >= 40 galaxies/Mpc^2 and appears
to be primarily due to a deficit of S0 galaxies and an excess of Spiral+Irr
galaxies relative to the local galaxy population. The Elliptical fraction -
density relation exhibits no significant evolution between z = 1 and z = 0. We
find mild evidence to suggest that the MDR is dependent on the bolometric X-ray
luminosity of the intracluster medium. Implications for the evolution of the
disk galaxy population in dense regions are discussed in the context of these
observations.Comment: 30 pages, 18 figures. Accepted for publication in ApJ. Full
resolution versions of figs 2,3,6,8 are available at
http://www.stsci.edu/~postman/mdr_figure
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1
We investigate the evolution in the distribution of surface brightness, as a
function of size, for elliptical and S0 galaxies in the two clusters RDCS
J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging
with the Advanced Camera for Surveys on the Hubble Space Telescope to determine
these sizes and surface brightnesses. Using three different estimates of the
surface brightnesses, we find that we reliably estimate the surface brightness
for the galaxies in our sample with a scatter of < 0.2 mag and with systematic
shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type
morphologies in both clusters. For each cluster, we use a magnitude limit in a
band which closely corresponds to the rest-frame B, to magnitude limit of M_B =
-18.8 at z=0, and select only those galaxies within the color-magnitude
sequence of the cluster or by using our spectroscopic redshifts. We measure
evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag
from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag
of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15)
z mag. Our statistical errors are dominated by the observed scatter in the
size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX
J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no
statistically significant evolution in this scatter, though an increase in the
scatter could be expected. Overall, the pace of luminosity evolution we measure
agrees with that of the Fundamental Plane of early-type galaxies, implying that
the majority of massive early-type galaxies observed at z =~ 1 formed at high
redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6
in colo
Asynchronous Partial Overlay: A New Algorithm for Solving Distributed Constraint Satisfaction Problems
Distributed Constraint Satisfaction (DCSP) has long been considered an
important problem in multi-agent systems research. This is because many
real-world problems can be represented as constraint satisfaction and these
problems often present themselves in a distributed form. In this article, we
present a new complete, distributed algorithm called Asynchronous Partial
Overlay (APO) for solving DCSPs that is based on a cooperative mediation
process. The primary ideas behind this algorithm are that agents, when acting
as a mediator, centralize small, relevant portions of the DCSP, that these
centralized subproblems overlap, and that agents increase the size of their
subproblems along critical paths within the DCSP as the problem solving
unfolds. We present empirical evidence that shows that APO outperforms other
known, complete DCSP techniques
PEPSI: The high-resolution echelle spectrograph and polarimeter for the Large Binocular Telescope
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle
Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular
Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270
000 can cover the entire optical/red wavelength range from 383 to 907 nm in
three exposures. Two 10.3kx10.3k CCDs with 9-{\mu}m pixels and peak quantum
efficiencies of 96 % record a total of 92 echelle orders. We introduce a new
variant of a wave-guide image slicer with 3, 5, and 7 slices and peak
efficiencies between 96 %. A total of six cross dispersers cover the six
wavelength settings of the spectrograph, two of them always simultaneously.
These are made of a VPH-grating sandwiched by two prisms. The peak efficiency
of the system, including the telescope, is 15% at 650 nm, and still 11% and 10%
at 390 nm and 900 nm, respectively. In combination with the 110 m2
light-collecting capability of the LBT, we expect a limiting magnitude of 20th
mag in V in the low-resolution mode. The R=120 000 mode can also be used with
two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with
the 7-slice image slicer and a 100- {\mu}m fibre through a projected sky
aperture of 0.74", comparable to the median seeing of the LBT site. The
43000-mode with 12-pixel sampling per resolution element is our bad seeing or
faint-object mode. Any of the three resolution modes can either be used with
sky fibers for simultaneous sky exposures or with light from a stabilized
Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is
performed with the dedicated data-reduction and analysis package PEPSI-S4S. A
solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m
VATT can be used when the LBT is busy otherwise. In this paper, we present the
basic instrument design, its realization, and its characteristics
- …
