271,833 research outputs found
The influence of reconstruction criteria on the sensitive probes of the symmetry potential
Different criteria of constructing clusters and tracing back
resonances from the intermediate-energy neutron-rich HICs are discussed by
employing the updated UrQMD transport model. It is found that both the
phase-space and the coordinate-density criteria affect the single and the
double neutron/proton ratios of free nucleons at small transverse momenta, but
the influence becomes invisible at large transverse momenta. The effect of
different methods of reconstructing freeze-out s on the
ratio is strong in a large kinetic energy region.Comment: 8 pages, 7 fig
Helical Phase Inflation via Non-Geometric Flux Compactifications: from Natural to Starobinsky-like Inflation
We show that a new class of helical phase inflation models can be simply
realized in minimal supergravity, wherein the inflaton is the phase component
of a complex field and its potential admits a deformed helicoid structure. We
find a new unique complex-valued index that characterizes almost the
entire region of the plane favored by new Planck observations.
Continuously varying the index , predictions interpolate from
quadratic/natural inflation parameterized by a phase/axion decay constant to
Starobinsky-like inflation parameterized by the -parameter. We
demonstrate that the simple supergravity construction realizing
Starobinsky-like inflation can be obtained from a more microscopic model by
integrating out heavy fields, and that the flat phase direction for slow-roll
inflation is protected by a mildly broken global symmetry. %, which is
mildly broken at the inflation energy scale. We study the geometrical origin of
the index , and find that it corresponds to a linear constraint relating
\kah moduli. We argue that such a linear constraint is a natural result of
moduli stabilization in Type \MyRoman{2} orientifold compactifications on
Calabi-Yau threefolds with geometric and non-geometric fluxes. Possible choices
for the index are discrete points on the complex plane that relate to
the distribution of supersymmetric Minkowski vacua on moduli space. More
precise observations of the inflationary epoch in the future may provide a
better estimation of the index . Since is determined by the fluxes
and vacuum expectation values of complex structure moduli, such observations
would characterize the geometry of the internal space as well.Comment: 26 pages, 4 figures; 4+1 figure, discussion on several energy scales
added, references added, to appear in JHE
Natural Inflation with Natural Trans-Planckian Axion Decay Constant from Anomalous
We propose a natural inflation model driven by an imaginary or axionic
component of a K\"ahler modulus in string-inspired supergravity. The shift
symmetry of the axion is gauged under an anomalous symmetry, which
leads to a modulus-dependent Fayet-Iliopoulos (FI) term. The matter fields are
stabilized by F-terms, and the real component of the modulus is stabilized by
the D-term, while its axion remains light. Therefore, the masses of
real and imaginary components of the modulus are separated at different scales.
The scalar potential for natural inflation is realized by the superpotential
from the non-perturbative effects. The trans-Planckian axion decay constant,
which is needed to fit with BICEP2 observations, can be obtained naturally in
this model.Comment: 14 pages, no figure, references added, version published in JHE
Consistent Energy-based Atomistic/Continuum Coupling for Two-body Potentials in Three Dimensions
Very few works exist to date on development of a consistent energy-based
coupling of atomistic and continuum models of materials in more than one
dimension. The difficulty in constructing such a coupling consists in defining
a coupled energy whose minimizers are free from uncontrollable errors on the
atomistic/continuum interface. In this paper a consistent coupling in three
dimensions is proposed. The main achievement of this work is to identify and
efficiently treat a modified Cauchy-Born continuum model which can be coupled
to the exact atomistic model. The convergence and stability of the method is
confirmed with numerical tests.Comment: 29 pages, 1 Matlab code. Typos corrected, exposition improve
- …
