1,247 research outputs found
Features of ion acceleration by circularly polarized laser pulses
The characteristics of a MeV ion source driven by superintense, ultrashort
laser pulses with circular polarization are studied by means of
particle-in-cell simulations. Predicted features include high efficiency, large
ion density, low divergence and the possibility of femtosecond duration. A
comparison with the case of linearly polarized pulses is made.Comment: 4 pages, 4 figure
Widening use of dexamethasone implant for the treatment of macular edema
Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etiopathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, comparative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treatment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice
Radiation Reaction Effects on Electron Nonlinear Dynamics and Ion Acceleration in Laser-solid Interaction
Radiation Reaction (RR) effects in the interaction of an ultra-intense laser
pulse with a thin plasma foil are investigated analytically and by
two-dimensional (2D3P) Particle-In-Cell (PIC) simulations. It is found that the
radiation reaction force leads to a significant electron cooling and to an
increased spatial bunching of both electrons and ions. A fully relativistic
kinetic equation including RR effects is discussed and it is shown that RR
leads to a contraction of the available phase space volume. The results of our
PIC simulations are in qualitative agreement with the predictions of the
kinetic theory
Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses
The generation of electron surface oscillations in overdense plasmas
irradiated at normal incidence by an intense laser pulse is investigated.
Two-dimensional (2D) particle-in-cell simulations show a transition from a
planar, electrostatic oscillation at , with the laser
frequency, to a 2D electromagnetic oscillation at frequency and
wavevector . A new electron parametric instability, involving the
decay of a 1D electrostatic oscillation into two surface waves, is introduced
to explain the basic features of the 2D oscillations. This effect leads to the
rippling of the plasma surface within a few laser cycles, and is likely to have
a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for
publication in Phys. Rev. Let
Ion dynamics and coherent structure formation following laser pulse self-channeling
The propagation of a superintense laser pulse in an underdense, inhomogeneous
plasma has been studied numerically by two-dimensional particle-in-cell
simulations on a time scale extending up to several picoseconds. The effects of
the ion dynamics following the charge-displacement self-channeling of the laser
pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of
the plasma channel walls, causing an inversion of the radial space-charge field
and the filamentation of the laser pulse. At later times a number of
long-lived, quasi-periodic field structures are observed and their dynamics is
characterized with high resolution. Inside the plasma channel, a pattern of
electric and magnetic fields resembling both soliton- and vortex-like
structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download
a high-resolution version), to appear in Plasma Physics and Controlled Fusion
(Dec. 2007), special issue containing invited papers from the 34th EPS
Conference on Plasma Physics (Warsaw, July 2007
Dynamics of charge-displacement channeling in intense laser-plasma interactions
The dynamics of transient electric fields generated by the interaction of
high intensity laser pulses with underdense plasmas has been studied
experimentally with the proton projection imaging technique. The formation of a
charged channel, the propagation of its front edge and the late electric field
evolution have been characterised with high temporal and spatial resolution.
Particle-in-cell simulations and an electrostatic, ponderomotive model
reproduce the experimental features and trace them back to the ponderomotive
expulsion of electrons and the subsequent ion acceleration.Comment: 5 figures, accepted for publication in New Journal of Physic
Mean-Field Interacting Boson Random Point Fields in Weak Harmonic Traps
A model of the mean-field interacting boson gas trapped by a weak harmonic
potential is considered by the \textit{boson random point fields} methods. We
prove that in the Weak Harmonic Trap (WHT) limit there are two phases
distinguished by the boson condensation and by a different behaviour of the
local particle density. For chemical potentials less than a certain critical
value, the resulting Random Point Field (RPF) coincides with the usual boson
RPF, which corresponds to a non-interacting (ideal) boson gas. For the chemical
potentials greater than the critical value, the boson RPF describes a divergent
(local) density, which is due to \textit{localization} of the macroscopic
number of condensed particles. Notice that it is this kind of transition that
observed in experiments producing the Bose-Einstein Condensation in traps
Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs
Two conformationally constrained compounds similar to chicoric acid but lacking the catechol and carboxyl groups were prepared. In these analogues, the single bond between the two caffeoyl fragments has been replaced with a chiral oxirane ring and both aromatic residues modified protecting completely or partially the catechol moiety as methyl ether. Preliminary molecular modelling studies carried out on the two analogues showed interactions near the active site of HIV integrase; however, in comparison with raltegravir, the biological evaluation confirmed that CAA-1 and CAA-2 were unable to inhibit infection at lower concentration
Spectral shapes of solid neon
We present a Path Integral Monte Carlo calculation of the first three moments
of the displacement-displacement correlation functions of solid neon at
different temperatures for longitudinal and transverse phonon modes. The
Lennard-Jones potential is considered. The relevance of the quantum effects on
the frequency position of the peak and principally on the line-width of the
spectral shape is clearly pointed out. The spectrum is reconstructed via a
continued fraction expansion; the approximations introduced using the effective
potential quantum molecular dynamics are discussed.Comment: 3 pages, 2 figures, 3 table
- …
