1,297 research outputs found
Fluctuations in mixtures of lamellar- and nonlamellar-forming lipids
We consider the role of nonlamellar-forming lipids in biological membranes by
examining fluctuations, within the random phase approximation, of a model
mixture of two lipids, one of which forms lamellar phases while the other forms
inverted hexagonal phases. To determine the extent to which nonlamellar-forming
lipids facilitiate the formation of nonlamellar structures in lipid mixtures,
we examine the fluctuation modes and various correlation functions in the
lamellar phase of the mixture. To highlight the role fluctuations can play, we
focus on the lamellar phase near its limit of stability. Our results indicate
that in the initial stages of the transition, undulations appear in the
lamellae occupied by the tails, and that the nonlamellar-forming lipid
dominates these undulations. The lamellae occupied by the head groups pinch off
to make the tubes of the hexagonal phase. Examination of different correlations
and susceptibilities makes quantitative the dominant role of the
nonlamellar-forming lipids.Comment: 7 figures (better but larger in byte figures are available upon
resuest), submitte
New mechanism of membrane fusion
We have carried out Monte Carlo simulation of the fusion of bilayers of
single chain amphiphiles which show phase behavior similar to that of
biological lipids. The fusion mechanism we observe is very different from the
``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do
not grow radially to form a hemifused state. Instead, stalk formation
destabilizes the membranes and results in hole formation in the vicinity of the
stalks. When holes in each bilayer nucleate spontaneously next to the same
stalk, an incomplete fusion pore is formed. The fusion process is completed by
propagation of the initial connection, the stalk, along the edges of the
aligned holes.Comment: 4 pages, 3 figure
Distribution of lipids in non-lamellar phases of their mixtures
We consider a model of lipids in which a head group, characterized by its
volume, is attached to two flexible tails of equal length. The phase diagram of
the anhydrous lipid is obtained within self-consistent field theory, and
displays, as a function of lipid architecture, a progression of phases:
body-centered cubic, hexagonal, gyroid, and lamellar. We then examine mixtures
of an inverted hexagonal forming lipid and a lamellar forming lipid. As the
volume fractions of the two lipids vary, we find that inverted hexagonal,
gyroid, or lamellar phases are formed. We demonstrate that the non-lamellar
forming lipid is found preferentially at locations which are difficult for the
lipid tails to reach. Variations in the volume fraction of each type of lipid
tail are on the order of one to ten per cent within regions dominated by the
tails. We also show that the variation in volume fraction is correlated
qualitatively with the variation in mean curvature of the head-tail interface.Comment: 10 pages, 12 figures (better figures are available upon request), to
appear in J. Chem. Phy
Magnetic and magnetocaloric properties of (MnCo)1-xGe compounds
The crystal structure, magnetic properties, and heat capacity of the (MnCo)1-xGe compounds with x ≤ 0.05 have been studied. It was found that, as the deviation from the MnCoGe stoichiometric composition increases, the temperature of structural transition from the low-temperature phase with the orthorhombic TiNiSi-type structure to the high-temperature phase with the hexagonal Ni2In-type phase decreases rapidly, whereas the magnetic ordering temperature varies slightly. The temperature of structural transition for the composition with x = 0.02 approximately coincides with the Curie temperature of the hexagonal phase, and the transition is accompanied by a significant entropy change, namely, ΔS = 34 J/(kg K). The application of high magnetic field in the transition-temperature range causes an increase in the relative volume of the orthorhombic phase. An analysis of magnetocaloric properties of these compounds, which was performed with the formal application of the Maxwell's relationship near the temperature of first-order structural phase transition, is shown to give overestimated values of the entropy change. © Pleiades Publishing, Ltd., 2013
Standard Thermodynamic Functions of Tripeptides N-Formyl-L-Methionyl-L-Leucyl-L-Phenylalaninol and N-Formyl-L-Methionyl-L-Leucyl-L-Phenylalanine Methyl Ester
The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal decomposition was observed. The standard thermodynamic functions: molar heat capacity C[subscript p,m], enthalpy H(T) – H(0), entropy S(T), and Gibbs energy G(T) – H(0) of peptides were calculated over the range from T = (0 to 350) K. The low-temperature (T ≤ 50 K) heat capacities dependencies were analyzed using the Debye’s and the multifractal theories. The standard entropies of formation of peptides at T = 298.15 K were calculated.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-003151)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001960)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002026)Ministry of Education and Science of the Russian Federation (Contract 14.B37.21.0799
Continuous selections of multivalued mappings
This survey covers in our opinion the most important results in the theory of
continuous selections of multivalued mappings (approximately) from 2002 through
2012. It extends and continues our previous such survey which appeared in
Recent Progress in General Topology, II, which was published in 2002. In
comparison, our present survey considers more restricted and specific areas of
mathematics. Note that we do not consider the theory of selectors (i.e.
continuous choices of elements from subsets of topological spaces) since this
topics is covered by another survey in this volume
- …
