428 research outputs found
Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powdersd-A combined experimental and theoretical study
Rare-earth (RE) element-based materials for optical applications have received increasing attention owing to the emission properties of RE ions, which render these materials suitable for use in color displays, lasers, and solid-state lighting. In the present work, ZrO2:RE (RE = Tm3+, Tb3+, and Eu3+) powders were obtained via complex polymerization, and characterized by means of X-ray diffraction (XRD), Raman spectroscopy, UV–visible absorption spectroscopy, and photoluminescence measurements. The XRD patterns and Raman spectra revealed the tetragonal phase of ZrO2 co-doped with up to 4 mol.% RE3+ and stabilization of the cubic phase, for up to 8 mol.% RE3+. In addition, the photoluminescence measurements revealed simultaneous emissions in the blue (477 nm), green (496.02 nm and 548.32 nm), and red-orange (597.16 nm and 617.54 nm) regions. These emissions result from the Tm3+, Tb 3+, and Eu3+ ions, respectively. Energy transfers, such as 1G4 levels (Tm3+) → 5D4 (Tb3+) and 5D4 levels (Tb3+) → 5D0 (Eu3+), occurred during the emission process. Calculations based on density functional theory (DFT) were performed, to complement the experimental data. The results revealed that structural order/disorder effects were generated in the cubic and tetragonal ZrO2 phases in the ZrO2:Eu3+ powders, and changes in the electronic structure were manifested as a decrease in the band gap values. The chromaticity coordinates of all the samples were determined from the PL spectrum. The coordinates, x = 0.34 and y = 0.34, of the ZrO2:8%RE sample corresponded to a point located in the white region of the CIE diagram and color correlated temperature (CCT) was found to be 5181 K. More importantly, the present results indicate that ZrO2:RE powders constitute promising photoluminescent materials for use in new lighting devices.The authors gratefully acknowledge the financial support of the Brazilian governmental research funding agencies CAPES, CNPq 402127/2013-7, FAPESP2013/07296-2 and INCTMN2008/57872-1
TeV Black Hole Fragmentation and Detectability in Extensive Air Showers
In models with large extra dimensions, particle collisions with a center-of-mass energy larger than the fundamental gravitational scale can generate nonperturbative gravitational objects. Since cosmic rays have been observed with energies above 108 TeV, gravitational effects in the TeV energy range can, in principle, be observed by ultrahigh energy cosmic ray detectors. We consider the interaction of ultrahigh energy neutrinos in the atmosphere and compare extensive air showers from TeV black hole formation and fragmentation with standard model processes. Departures from the standard model predictions arise in the interaction cross sections and in the multiplicity of secondary particles. Large theoretical uncertainties in the black hole cross section weaken attempts to constrain TeV gravity based solely on differences between predicted and observed event rates. The large multiplicity of secondaries in black hole fragmentation enhances the detectability of TeV gravity effects. We simulate TeV black hole air showers using PYTHIA and AIRES, and find that black-hole-induced air showers are quite distinct from standard model air showers. However, the limited amount of information registered by realistic detectors together with large air shower fluctuations limit in practice the ability to distinguish TeV gravity events from standard model events in a shower by shower case. We discuss possible strategies to optimize the detectability of black hole events and propose a few unique signatures that may allow future high statistics detectors to separate black hole from standard model events
<em>Enterococcus faecalis</em> Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells
Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression
Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma
BACKGROUND: North central China has some of the highest rates of esophageal squamous cell carcinoma in the world with cumulative mortality surpassing 20%. Mitochondrial DNA (mtDNA) accumulates more mutations than nuclear DNA and because of its high abundance has been proposed as a early detection device for subjects with cancer at various sites. We wished to examine the prevalence of mtDNA mutation and polymorphism in subjects from this high risk area of China. METHODS: We used DNA samples isolated from tumors, adjacent normal esophageal tissue, and blood from 21 esophageal squamous cell carcinoma cases and DNA isolated from blood from 23 healthy persons. We completely sequenced the control region (D-Loop) from each of these samples and used a PCR assay to assess the presence of the 4977 bp common deletion. RESULTS: Direct DNA sequencing revealed that 7/21 (33%, 95% CI = 17–55%) tumor samples had mutations in the control region, with clustering evident in the hyper-variable segment 1 (HSV1) and the homopolymeric stretch surrounding position 309. The number of mutations per subject ranged from 1 to 16 and there were a number of instances of heteroplasmy. We detected the 4977 bp 'common deletion' in 92% of the tumor and adjacent normal esophageal tissue samples examined, whereas no evidence of the common deletion was found in corresponding peripheral blood samples. CONCLUSIONS: Control region mutations were insufficiently common to warrant attempts to develop mtDNA mutation screening as a clinical test for ESCC. The common deletion was highly prevalent in the esophageal tissue of cancer cases but absent from peripheral blood. The potential utility of the common deletion in an early detection system will be pursued in further studies
Measurement of the forward Z boson production cross-section in pp collisions at TeV
A measurement of the production cross-section of Z bosons in pp collisions at TeV is presented using dimuon and dielectron final states in LHCb data. The cross-section is measured for leptons with pseudorapidities in the range , transverse momenta GeV and dilepton invariant mass in the range GeV. The integrated cross-section from averaging the two final states is \begin{equation*}\sigma_{\text{Z}}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6\text{ pb,}\end{equation*} where the first uncertainty is statistical, the second is due to systematic effects, and the third is due to the luminosity determination. In addition, differential cross-sections are measured as functions of the Z boson rapidity, transverse momentum and the angular variable
Lack of complex I is associated with oncocytic thyroid tumours
Oncocytic tumours are characterised by hyperproliferation of mitochondria. We immunohistochemically analysed all enzymes of the oxidative phosphorylation system in 19 oncocytic thyroid tumours. A specific lack of complex I was detected, which was expressed at <5% of the level determined in surrounding non-cancerous tissue
Understanding the White-Emitting CaMoO4 Co-Doped Eu3+, Tb3+, and Tm3+ Phosphor through Experiment and Computation
In this article, the synthesis by means of the spray pyrolysis method, of the CaMoO4 and rare-earth cation (RE3+)-doped CaMoO4:xRE3+ (RE3+ = Eu3+, Tb3+, and Tm3+; and x = 1, 2, and 4% mol) compounds, is presented. The as-synthesized samples were characterized using X-ray diffraction, Rietveld refinement, field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) spectroscopy. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, have been performed to analyze the band structure and density of states. In addition, a theoretical method based on the calculations of surface energies and Wulff construction was applied to obtain the morphology transformation of the CaMoO4 and CaMoO4:RE3+ microstructures. The experimental morphologies can be observed in the FE-SEM images. The PL behavior of the Co-doped samples exhibited well-defined bands in the visible region. The samples with 2 and 4% of RE3+ released white emission according to the chromaticity coordinates (0.34, 0.34) and (0.34, 0.33), respectively. The present results provide not only a deep understanding of the structure–property relationships of CaMoO4-based phosphor but also can be employed as a guideline for the design of the electronic structure of the materials and the fabrication of photofunctional materials with optimal properties, which allows for the modeling of new phosphors for applications in solid-state lighting
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas
Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO
- …
