148 research outputs found
The Frontal Control of Stopping
Stopping is a critical aspect of brain function. Like other voluntary actions, it is defined by its context as much as by its execution. Its neural substrate must therefore reflect both. Here, we distinguish those elements of the underlying brain circuit that preferentially reflect contextual aspects of stopping from those related to its execution. Contextual complexity of stopping was modulated using a novel "Stop/Change-signal" task, which also allowed us to parameterize the duration of the stopping process. Human magnetoencephalographic activity and behavioral responses were simultaneously recorded. Whereas theta/alpha frequency activity in the right inferior frontal gyrus was most closely associated with the duration of the stopping process, earlier gamma frequency activity in the pre-supplementary motor area was unique in showing contextual modulation. These results differentiate the roles of 2 key frontal regions involved in stopping, a crucial aspect of behavioral control
Interband mixing between two-dimensional states localized in a surface quantum well and heavy hole states of the valence band in narrow gap semiconductor
Theoretical calculations in the framework of Kane model have been carried out
in order to elucidate the role of interband mixing in forming the energy
spectrum of two-dimensional carriers, localized in a surface quantum well in
narrow gap semiconductor. Of interest was the mixing between the 2D states and
heavy hole states in the volume of semiconductor. It has been shown that the
interband mixing results in two effects: the broadening of 2D energy levels and
their shift, which are mostly pronounced for semiconductors with high doping
level. The interband mixing has been found to influence mostly the effective
mass of 2D carriers for large their concentration, whereas it slightly changes
the subband distribution in a wide concentration range.Comment: 12 pages (RevTEX) and 4 PostScript-figure
Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening
The results of tunnelling studies of the energy spectrum of two-dimensional
(2D) states in a surface quantum well in a semiconductor with inverted band
structure are presented. The energy dependence of quasimomentum of the 2D
states over a wide energy range is obtained from the analysis of tunnelling
conductivity oscillations in a quantizing magnetic field. The spin-orbit
splitting of the energy spectrum of 2D states, due to inversion asymmetry of
the surface quantum well, and the broadening of 2D states at the energies, when
they are in resonance with the heavy hole valence band, are investigated in
structures with different strength of the surface quantum well. A quantitative
analysis is carried out within the framework of the Kane model of the energy
spectrum. The theoretical results are in good agreement with the tunnelling
spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on
request from [email protected]
From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex
Recent studies have pointed out the importance of transient synchronization
between widely distributed neural assemblies to understand conscious
perception. These neural assemblies form intricate networks of neurons and
synapses whose detailed map for mammals is still unknown and far from our
experimental capabilities. Only in a few cases, for example the C. elegans, we
know the complete mapping of the neuronal tissue or its mesoscopic level of
description provided by cortical areas. Here we study the process of transient
and global synchronization using a simple model of phase-coupled oscillators
assigned to cortical areas in the cerebral cat cortex. Our results highlight
the impact of the topological connectivity in the developing of
synchronization, revealing a transition in the synchronization organization
that goes from a modular decentralized coherence to a centralized synchronized
regime controlled by a few cortical areas forming a Rich-Club connectivity
pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On
Long-Term Survival of a Patient with Giant Cell Glioblastoma: Case Report and Review of the Literature
Glioblastoma multiforme (GBM) is the most common glial tumor of the central nervous system. Overall survival is less than a year in most of the cases in spite of multimodal treatment approaches. A 45-year-old female with histologically confirmed giant cell GBM was treated at our institution. Subtotal excision of the lesion situated in the right precentral area was performed during the initial stay in August 2005. The patient improved after the procedure with no hypertension and additional neurological deficit. Radiotherapy plus concomitant and adjuvant temozolomide was performed. The patient was symptom-free for 35 months after initial surgery. From July 2008 the patient developed partial motor seizures in the left side of the body and progressive hemiparesis. Local tumor progression was demonstrated on the neuroimaging studies. In December 2008, a second operative intervention was performed with subtotal excision of the tumor. Forty-five months after the initial diagnosis the patient is still alive with moderate neurological deficit. Microarray analysis of the tumor found the following numeric chromosomal aberrations: monosomy 8, 10, 13, 22, and trisomy 21, as well as amplifications in 4q34.1, 4q28.2, 6q16.3, 7q36.1, 7p21.3, and deletions in 1q42.12, 1q32.2, 1q25.2, 1p33, 2q37.2, 18q22.3, 19p13.2, Xq28, and Xq27.3. GBMs seem to be a heterogeneous group of glial tumors with different clinical course and therapeutic response. Microarray analysis is a useful method to establish a number of possible molecular predictors
Normal Pressure Hydrocephalus as an Unusual Presentation of Supratentorial Extraventricular Space-Occupying Processes: Report on Two Cases
Normal pressure hydrocephalus (NPH) is a clinical and radiographic syndrome characterized by ventriculomegaly, abnormal gait, urinary incontinence, and dementia. The condition may occur due to a variety of secondary causes but may be idiopathic in approximately 50% of patients. Secondary causes may include head injury, subarachnoid hemorrhage, meningitis, and central nervous system tumor. Here, we describe two extremely rare cases of supratentorial extraventricular space-occupying processes: meningioma and glioblastoma multiforme, which initially presented with NPH
Penetration Problem for Infrastructe Stability in Conditions of Offshore Fields Development
The paper is generally devoted to the problem of offshore oil and gas fields' development. The main focus of the study is mechanical behavior of seafloor sediments and stability of infrastructure objects' supporting constructions. We study the problem of estimating the effective mechanic properties of seafloor sediments. To solve the problem, we propose the usage of gravity corer of bottom sediments. These corers make it possible to study dynamic elastic properties at the ship laboratory conditions. We study the sampling process itself as a tool to estimate the rheological properties of seafloor sediments. In the current study, we propose a specific analysis of the samples and sampling process. The sampling corer is equipped with tools providing an opportunity to measure its acceleration at each moment during the sampling process. This acceleration depends on controllable sampling process conditions and mechanical properties of seafloor sediments being sampled. A corresponding contact problem is considered using the finite-element method. It is shown that there is an opportunity to evaluate some (but not all) parameters for visco-elasto-plastic rheology of the sediments from a known acceleration of the sampling tube. The obtained results make it possible to improve the quality of model of mechanical properties of the seafloor sediments. This improvement provides the corresponding increase in mechanical modeling of infrastructure stability and decreases the risks accompanying offshore field development
Genetic and neurological foundations of customer orientation: field and experimental evidence
We explore genetic and neurological bases for customer orientation (CO) and contrast them with sales orientation (SO). Study 1 is a field study that establishes that CO, but not SO, leads to greater opportunity recognition. Study 2 examines genetic bases for CO and finds that salespeople with CO are more likely to have the 7R variant of the DRD4 gene. This is consistent with basic research on dopamine receptor activity in the brain that underlies novelty seeking, the reward function, and risk taking. Study 3 examines the neural basis of CO and finds that salespeople with CO, but not SO, experience greater activation of their mirror neuron systems and neural processes associated with empathy. Managerial and research implications are discussed
Brain tumour genetic network signatures of survival
Tumour heterogeneity is increasingly recognized as a major obstacle to
therapeutic success across neuro-oncology. Gliomas are characterised by
distinct combinations of genetic and epigenetic alterations, resulting in
complex interactions across multiple molecular pathways. Predicting disease
evolution and prescribing individually optimal treatment requires statistical
models complex enough to capture the intricate (epi)genetic structure
underpinning oncogenesis. Here, we formalize this task as the inference of
distinct patterns of connectivity within hierarchical latent representations of
genetic networks. Evaluating multi-institutional clinical, genetic, and outcome
data from 4023 glioma patients over 14 years, across 12 countries, we employ
Bayesian generative stochastic block modelling to reveal a hierarchical network
structure of tumour genetics spanning molecularly confirmed glioblastoma, IDH-
wildtype; oligodendroglioma, IDH-mutant and 1p/19q codeleted; and astrocytoma,
IDH- mutant. Our findings illuminate the complex dependence between features
across the genetic landscape of brain tumours, and show that generative network
models reveal distinct signatures of survival with better prognostic fidelity
than current gold standard diagnostic categories.Comment: Main article: 52 pages, 1 table, 7 figures. Supplementary material:
13 pages, 11 supplementary figure
Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area
The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra-but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG-but not the pre-SMA-exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output
- …
