1,245 research outputs found
Kinetics of Heterogeneous Single-Species Annihilation
We investigate the kinetics of diffusion-controlled heterogeneous
single-species annihilation, where the diffusivity of each particle may be
different. The concentration of the species with the smallest diffusion
coefficient has the same time dependence as in homogeneous single-species
annihilation, A+A-->0. However, the concentrations of more mobile species decay
as power laws in time, but with non-universal exponents that depend on the
ratios of the corresponding diffusivities to that of the least mobile species.
We determine these exponents both in a mean-field approximation, which should
be valid for spatial dimension d>2, and in a phenomenological Smoluchowski
theory which is applicable in d<2. Our theoretical predictions compare well
with both Monte Carlo simulations and with time series expansions.Comment: TeX, 18 page
Power-law velocity distributions in granular gases
We report a general class of steady and transient states of granular gases.
We find that the kinetic theory of inelastic gases admits stationary solutions
with a power-law velocity distribution, f(v) ~ v^(-sigma). The exponent sigma
is found analytically and depends on the spatial dimension, the degree of
inelasticity, and the homogeneity degree of the collision rate. Driven
steady-states, with the same power-law tail and a cut-off can be maintained by
injecting energy at a large velocity scale, which then cascades to smaller
velocities where it is dissipated. Associated with these steady-states are
freely cooling time-dependent states for which the cut-off decreases and the
velocity distribution is self-similar.Comment: 11 pages, 9 figure
Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions
We study velocity statistics of electrostatically driven granular gases. For
two different experiments: (i) non-magnetic particles in a viscous fluid and
(ii) magnetic particles in air, the velocity distribution is non-Maxwellian,
and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is
consistent with kinetic theory of driven dissipative particles. For particles
immersed in a fluid, viscous damping is responsible for the exponential tail,
while for magnetic particles, long-range interactions cause the exponential
tail. We conclude that velocity statistics of dissipative gases are sensitive
to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure
Weak Disorder in Fibonacci Sequences
We study how weak disorder affects the growth of the Fibonacci series. We
introduce a family of stochastic sequences that grow by the normal Fibonacci
recursion with probability 1-epsilon, but follow a different recursion rule
with a small probability epsilon. We focus on the weak disorder limit and
obtain the Lyapunov exponent, that characterizes the typical growth of the
sequence elements, using perturbation theory. The limiting distribution for the
ratio of consecutive sequence elements is obtained as well. A number of
variations to the basic Fibonacci recursion including shift, doubling, and
copying are considered.Comment: 4 pages, 2 figure
Third and fourth degree collisional moments for inelastic Maxwell models
The third and fourth degree collisional moments for -dimensional inelastic
Maxwell models are exactly evaluated in terms of the velocity moments, with
explicit expressions for the associated eigenvalues and cross coefficients as
functions of the coefficient of normal restitution. The results are applied to
the analysis of the time evolution of the moments (scaled with the thermal
speed) in the free cooling problem. It is observed that the characteristic
relaxation time toward the homogeneous cooling state decreases as the
anisotropy of the corresponding moment increases. In particular, in contrast to
what happens in the one-dimensional case, all the anisotropic moments of degree
equal to or less than four vanish in the homogeneous cooling state for .Comment: 15 pages, 3 figures; v2: addition of two new reference
Leadership Statistics in Random Structures
The largest component (``the leader'') in evolving random structures often
exhibits universal statistical properties. This phenomenon is demonstrated
analytically for two ubiquitous structures: random trees and random graphs. In
both cases, lead changes are rare as the average number of lead changes
increases quadratically with logarithm of the system size. As a function of
time, the number of lead changes is self-similar. Additionally, the probability
that no lead change ever occurs decays exponentially with the average number of
lead changes.Comment: 5 pages, 3 figure
Collisional rates for the inelastic Maxwell model: application to the divergence of anisotropic high-order velocity moments in the homogeneous cooling state
The collisional rates associated with the isotropic velocity moments
and
are exactly derived in the case of the
inelastic Maxwell model as functions of the exponent , the coefficient of
restitution , and the dimensionality . The results are applied to
the evolution of the moments in the homogeneous free cooling state. It is found
that, at a given value of , not only the isotropic moments of a degree
higher than a certain value diverge but also the anisotropic moments do. This
implies that, while the scaled distribution function has been proven in the
literature to converge to the isotropic self-similar solution in well-defined
mathematical terms, nonzero initial anisotropic moments do not decay with time.
On the other hand, our results show that the ratio between an anisotropic
moment and the isotropic moment of the same degree tends to zero.Comment: 7 pages, 2 figures; v2: clarification of some mathematical statements
and addition of 7 new references; v3: Published in "Special Issue: Isaac
Goldhirsch - A Pioneer of Granular Matter Theory
Transport coefficients for inelastic Maxwell mixtures
The Boltzmann equation for inelastic Maxwell models is used to determine the
Navier-Stokes transport coefficients of a granular binary mixture in
dimensions. The Chapman-Enskog method is applied to solve the Boltzmann
equation for states near the (local) homogeneous cooling state. The mass, heat,
and momentum fluxes are obtained to first order in the spatial gradients of the
hydrodynamic fields, and the corresponding transport coefficients are
identified. There are seven relevant transport coefficients: the mutual
diffusion, the pressure diffusion, the thermal diffusion, the shear viscosity,
the Dufour coefficient, the pressure energy coefficient, and the thermal
conductivity. All these coefficients are {\em exactly} obtained in terms of the
coefficients of restitution and the ratios of mass, concentration, and particle
sizes. The results are compared with known transport coefficients of inelastic
hard spheres obtained analytically in the leading Sonine approximation and by
means of Monte Carlo simulations. The comparison shows a reasonably good
agreement between both interaction models for not too strong dissipation,
especially in the case of the transport coefficients associated with the mass
flux.Comment: 9 figures, to be published in J. Stat. Phy
Hydrodynamics of inelastic Maxwell models
An overview of recent results pertaining to the hydrodynamic description
(both Newtonian and non-Newtonian) of granular gases described by the Boltzmann
equation for inelastic Maxwell models is presented. The use of this
mathematical model allows us to get exact results for different problems.
First, the Navier--Stokes constitutive equations with explicit expressions for
the corresponding transport coefficients are derived by applying the
Chapman--Enskog method to inelastic gases. Second, the non-Newtonian
rheological properties in the uniform shear flow (USF) are obtained in the
steady state as well as in the transient unsteady regime. Next, an exact
solution for a special class of Couette flows characterized by a uniform heat
flux is worked out. This solution shares the same rheological properties as the
USF and, additionally, two generalized transport coefficients associated with
the heat flux vector can be identified. Finally, the problem of small spatial
perturbations of the USF is analyzed with a Chapman--Enskog-like method and
generalized (tensorial) transport coefficients are obtained.Comment: 40 pages, 10 figures; v2: final version published in a special issue
devoted to "Granular hydrodynamics
An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux
In the steady Couette flow of a granular gas the sign of the heat flux
gradient is governed by the competition between viscous heating and inelastic
cooling. We show from the Boltzmann equation for inelastic Maxwell particles
that a special class of states exists where the viscous heating and the
inelastic cooling exactly compensate each other at every point, resulting in a
uniform heat flux. In this state the (reduced) shear rate is enslaved to the
coefficient of restitution , so that the only free parameter is the
(reduced) thermal gradient . It turns out that the reduced moments of
order are polynomials of degree in , with coefficients that
are nonlinear functions of . In particular, the rheological properties
() are independent of and coincide exactly with those of the
simple shear flow. The heat flux () is linear in the thermal gradient
(generalized Fourier's law), but with an effective thermal conductivity
differing from the Navier--Stokes one. In addition, a heat flux component
parallel to the flow velocity and normal to the thermal gradient exists. The
theoretical predictions are validated by comparison with direct Monte Carlo
simulations for the same model.Comment: 16 pages, 4 figures,1 table; v2: minor change
- …
