1,245 research outputs found

    Kinetics of Heterogeneous Single-Species Annihilation

    Full text link
    We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where the diffusivity of each particle may be different. The concentration of the species with the smallest diffusion coefficient has the same time dependence as in homogeneous single-species annihilation, A+A-->0. However, the concentrations of more mobile species decay as power laws in time, but with non-universal exponents that depend on the ratios of the corresponding diffusivities to that of the least mobile species. We determine these exponents both in a mean-field approximation, which should be valid for spatial dimension d>2, and in a phenomenological Smoluchowski theory which is applicable in d<2. Our theoretical predictions compare well with both Monte Carlo simulations and with time series expansions.Comment: TeX, 18 page

    Power-law velocity distributions in granular gases

    Full text link
    We report a general class of steady and transient states of granular gases. We find that the kinetic theory of inelastic gases admits stationary solutions with a power-law velocity distribution, f(v) ~ v^(-sigma). The exponent sigma is found analytically and depends on the spatial dimension, the degree of inelasticity, and the homogeneity degree of the collision rate. Driven steady-states, with the same power-law tail and a cut-off can be maintained by injecting energy at a large velocity scale, which then cascades to smaller velocities where it is dissipated. Associated with these steady-states are freely cooling time-dependent states for which the cut-off decreases and the velocity distribution is self-similar.Comment: 11 pages, 9 figure

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure

    Weak Disorder in Fibonacci Sequences

    Full text link
    We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1-epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent, that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling, and copying are considered.Comment: 4 pages, 2 figure

    Third and fourth degree collisional moments for inelastic Maxwell models

    Full text link
    The third and fourth degree collisional moments for dd-dimensional inelastic Maxwell models are exactly evaluated in terms of the velocity moments, with explicit expressions for the associated eigenvalues and cross coefficients as functions of the coefficient of normal restitution. The results are applied to the analysis of the time evolution of the moments (scaled with the thermal speed) in the free cooling problem. It is observed that the characteristic relaxation time toward the homogeneous cooling state decreases as the anisotropy of the corresponding moment increases. In particular, in contrast to what happens in the one-dimensional case, all the anisotropic moments of degree equal to or less than four vanish in the homogeneous cooling state for d2d\geq 2.Comment: 15 pages, 3 figures; v2: addition of two new reference

    Leadership Statistics in Random Structures

    Full text link
    The largest component (``the leader'') in evolving random structures often exhibits universal statistical properties. This phenomenon is demonstrated analytically for two ubiquitous structures: random trees and random graphs. In both cases, lead changes are rare as the average number of lead changes increases quadratically with logarithm of the system size. As a function of time, the number of lead changes is self-similar. Additionally, the probability that no lead change ever occurs decays exponentially with the average number of lead changes.Comment: 5 pages, 3 figure

    Collisional rates for the inelastic Maxwell model: application to the divergence of anisotropic high-order velocity moments in the homogeneous cooling state

    Full text link
    The collisional rates associated with the isotropic velocity moments andtheanisotropicmoments and the anisotropic moments and are exactly derived in the case of the inelastic Maxwell model as functions of the exponent rr, the coefficient of restitution α\alpha, and the dimensionality dd. The results are applied to the evolution of the moments in the homogeneous free cooling state. It is found that, at a given value of α\alpha, not only the isotropic moments of a degree higher than a certain value diverge but also the anisotropic moments do. This implies that, while the scaled distribution function has been proven in the literature to converge to the isotropic self-similar solution in well-defined mathematical terms, nonzero initial anisotropic moments do not decay with time. On the other hand, our results show that the ratio between an anisotropic moment and the isotropic moment of the same degree tends to zero.Comment: 7 pages, 2 figures; v2: clarification of some mathematical statements and addition of 7 new references; v3: Published in "Special Issue: Isaac Goldhirsch - A Pioneer of Granular Matter Theory

    Transport coefficients for inelastic Maxwell mixtures

    Get PDF
    The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes transport coefficients of a granular binary mixture in dd dimensions. The Chapman-Enskog method is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state. The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion, the shear viscosity, the Dufour coefficient, the pressure energy coefficient, and the thermal conductivity. All these coefficients are {\em exactly} obtained in terms of the coefficients of restitution and the ratios of mass, concentration, and particle sizes. The results are compared with known transport coefficients of inelastic hard spheres obtained analytically in the leading Sonine approximation and by means of Monte Carlo simulations. The comparison shows a reasonably good agreement between both interaction models for not too strong dissipation, especially in the case of the transport coefficients associated with the mass flux.Comment: 9 figures, to be published in J. Stat. Phy

    Hydrodynamics of inelastic Maxwell models

    Full text link
    An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier--Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman--Enskog method to inelastic gases. Second, the non-Newtonian rheological properties in the uniform shear flow (USF) are obtained in the steady state as well as in the transient unsteady regime. Next, an exact solution for a special class of Couette flows characterized by a uniform heat flux is worked out. This solution shares the same rheological properties as the USF and, additionally, two generalized transport coefficients associated with the heat flux vector can be identified. Finally, the problem of small spatial perturbations of the USF is analyzed with a Chapman--Enskog-like method and generalized (tensorial) transport coefficients are obtained.Comment: 40 pages, 10 figures; v2: final version published in a special issue devoted to "Granular hydrodynamics

    An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux

    Full text link
    In the steady Couette flow of a granular gas the sign of the heat flux gradient is governed by the competition between viscous heating and inelastic cooling. We show from the Boltzmann equation for inelastic Maxwell particles that a special class of states exists where the viscous heating and the inelastic cooling exactly compensate each other at every point, resulting in a uniform heat flux. In this state the (reduced) shear rate is enslaved to the coefficient of restitution α\alpha, so that the only free parameter is the (reduced) thermal gradient ϵ\epsilon. It turns out that the reduced moments of order kk are polynomials of degree k2k-2 in ϵ\epsilon, with coefficients that are nonlinear functions of α\alpha. In particular, the rheological properties (k=2k=2) are independent of ϵ\epsilon and coincide exactly with those of the simple shear flow. The heat flux (k=3k=3) is linear in the thermal gradient (generalized Fourier's law), but with an effective thermal conductivity differing from the Navier--Stokes one. In addition, a heat flux component parallel to the flow velocity and normal to the thermal gradient exists. The theoretical predictions are validated by comparison with direct Monte Carlo simulations for the same model.Comment: 16 pages, 4 figures,1 table; v2: minor change
    corecore