4,565 research outputs found
Endosperm sterol phenotype and germination in wheat
Free and conjugated sterols of endosperm, coats, scutellum, coleoptile and roots have been analysed at different germination stages in two wheat cultivars with different endosperm sterol phenotypes. It seems that sterol metabolism of the developing tissues, namely coleoptile and roots, is not affected by the sterol conjugation profile of the endosperm. Enough sterol is present in the mature embryo to supply the germinating axis during the observation period (144 hr at 16°). The data suggest that sterol is transferred from scutellum to coleoptile and roots during germinatio
Expression of homoeologous molecular systems in wheat alloploids
Allopolyploidy is widespread in the plant kingdom, where it has been of considerable evolutionary significance. Although the existence of heterotic interactions between the genomes that make up an alloploid have been generally assumed, the precise nature of these interactions has not been extensively investigated. Presently available evidence about metabolic integration of the wheat genomes is examined in search of new insights about the different modes of genome interaction. Although additive expression seems to be the case for many homoeologous systems, more complex patterns of integration have become evident. Examples of enzyme subunit complementation, gene compensation and other dosage effects, holoprotein completion, and complementation of metabolic pathways are discussed
Genes involved in carotene synthesis and mating in Blakeslea trispora
Mating of Blakeslea trispora and other molds of the order Mucorales requires the interaction of mycelia of opposite sex, (+) and (-), leading to the development of specialized structures and to an enhanced accumulation of beta-carotene. Industry obtains beta-carotene by co-cultivating appropriate strains of Blakeslea (mated cultures). Gene transcription in single and mated cultures was assayed by cDNA-AFLP, a technique to observe the differential expression of subsets of mRNA fragments. Overexpression in mated cultures is about ten times more frequent than underexpression. We obtained and sequenced fragments of 97 candidate genes that appeared to be overexpressed during mating and confirmed four of them by reverse transcription and real-time PCR. Comparisons with gene sequences from other organisms suggest functions in carotene biosynthesis (4 genes), energy metabolism (8), cell wall synthesis (1), transfer of acetyl groups (1), and regulatory processes (10). Sodium acetate inhibited sexual overexpression in about two-thirds of the candidate genes and acted as a signal with broad effects on the metabolism and the morphology of mated cultures. Our work offers new materials for the study of carotene biosynthesis and its regulation and for the improvement of carotene production with Mucorales
Phycomyces
This monographic review on a fungus is not addressed to mycologists. None of the authors has been trained or has otherwise acquired a general proficiency in mycology. They are motivated by a common interest in the performances of signal handling exhibited by the sense organs of all organisms and by the desire to attack these as yet totally obscure aspects of molecular biology by the study of a microorganism with certain desirable properties.
The sporangiophore of the fungus Phycomyces is a gigantic, single-celled, erect, cylindrical, aerial hypha. It is sensitive to at least four distinct stimuli: light, gravity, stretch, and some unknown stimulus by which it avoids solid objects. These stimuli control a common output, the growth rate, producing either temporal changes in growth rate or tropic responses.
We are interested in the output because it gives us information about the reception of the various signals. In the absence of external stimuli, the growth rate is controlled by internal signals keeping the network of biochemical processes in balance. The external stimuli interact with the internal signals. We wish to inquire into the early steps of this interaction. For light, for instance, the cell must have a receptor pigment as the first
mediator. What kind of a molecule is this pigment? Which organelle contains it? What chemical reaction happens after a light quantum has been absorbed? And how is the information introduced by this primary photochemical event amplified in a controlled manner and processed in the next step? How do a few quanta or a few molecules trigger macroscopic responses? Will we find ourselves confronted with devices wholly distinct from anything now known in biology
Uniqueness of the Fock quantization of fields with unitary dynamics in nonstationary spacetimes
The Fock quantization of fields propagating in cosmological spacetimes is not
uniquely determined because of several reasons. Apart from the ambiguity in the
choice of the quantum representation of the canonical commutation relations,
there also exists certain freedom in the choice of field: one can scale it
arbitrarily absorbing background functions, which are spatially homogeneous but
depend on time. Each nontrivial scaling turns out into a different dynamics
and, in general, into an inequivalent quantum field theory. In this work we
analyze this freedom at the quantum level for a scalar field in a
nonstationary, homogeneous spacetime whose spatial sections have
topology. A scaling of the configuration variable is introduced as part of a
linear, time dependent canonical transformation in phase space. In this
context, we prove in full detail a uniqueness result about the Fock
quantization requiring that the dynamics be unitary and the spatial symmetries
of the field equations have a natural unitary implementation. The main
conclusion is that, with those requirements, only one particular canonical
transformation is allowed, and thus only one choice of field-momentum pair (up
to irrelevant constant scalings). This complements another previous uniqueness
result for scalar fields with a time varying mass on , which selects a
specific equivalence class of Fock representations of the canonical commutation
relations under the conditions of a unitary evolution and the invariance of the
vacuum under the background symmetries. In total, the combination of these two
different statements of uniqueness picks up a unique Fock quantization for the
system. We also extend our proof of uniqueness to other compact topologies and
spacetime dimensions.Comment: 12 page
Componentes não-integrantes da carcaça de bovinos de três grupos genéticos terminados em confinamento ou pastejo rotacionado com suplementação.
Foram avaliados os componentes não-integrantes da carcaça de bovinos castrados (novilhos) Brahman, Brangus e Hereford terminados em confinamento ou pastejo com suplementação (capim-mombaça). Os animais foram abatidos com espessura de gordura subcutânea superior a 4mm. A dieta do confinamento foi formulada com 60% de volumoso e 40% de concentrado, com 13% PB e 62% NDT. O capim mombaça apresentou 7% de PB e 56%NDT e o suplemento apresentou 24% PB e 76% NDT. O delineamento experimental foi inteiramente casualizado, com arranjo fatorial 3x2 (três grupos genéticos e dois sistemas de terminação) e as médias foram comparadas pelo teste de Tukey ajustado. Foram observadas diferenças significativas para o peso de abate (PA) e peso do corpo vazio (PCV) favorável aos animais mantidos em pastejo com suplementação (444,03 vs 416,50kg para PA e 409,68 vs 375,24kg para PCV), entretanto não houve diferença significativa entre os sistemas de terminação para o rendimento de corpo vazio (RCV). O menor percentual de órgãos vitais foi apresentado pela raça Brahman independente do sistema de terminação utilizado (2,19%). A mesma tendência foi observada para o trato digestivo com um percentual de participação de 3,77% PCV do Brahman vs 4,87% e 4,48% PCV do Hereford e Brangus, respectivamente. Os novilhos Brahman apresentaram menores pesos de coração, pulmão e baço que os Hereford e Brangus. Os animais terminados em pastejo apresentaram maiores pesos de abomaso, pulmão e rins que os terminados em confinamento, 0,47 vs 0,35% PCV; 0,77 vs 0,71% PCV e 0,77 vs 0,71% PCV, respectivamente
Characterization of cDNA clones of the family of trypsin/α-amylase inhibitors (CM-proteins) in barley (Hordeum vulgare L.)
Recombinants encoding members of the trypsin/-amylase inhibitors family (also designated CM-proteins) were selected from a cDNA library prepared from developing barley endosperm. Inserts in two of the clones, pUP-13 and pUP-38, were sequenced and found to encode proteins which clearly belong to this family, as judged from the extensive homology of the deduced sequences with that of the barley trypsin inhibitor CMe, the only member of the group for which a complete amino acid sequence has been obtained by direct protein sequencing. These results, together with previously obtained N-terminal sequences of purified CM-proteins, imply that there are at least six different members of this dispersed gene family in barley. The relationship of this protein family to the B-3 hordein and to reserve prolamins from related species is discussed in terms of their genome structure and evolution
Unique Fock quantization of scalar cosmological perturbations
We investigate the ambiguities in the Fock quantization of the scalar
perturbations of a Friedmann-Lema\^{i}tre-Robertson-Walker model with a massive
scalar field as matter content. We consider the case of compact spatial
sections (thus avoiding infrared divergences), with the topology of a
three-sphere. After expanding the perturbations in series of eigenfunctions of
the Laplace-Beltrami operator, the Hamiltonian of the system is written up to
quadratic order in them. We fix the gauge of the local degrees of freedom in
two different ways, reaching in both cases the same qualitative results. A
canonical transformation, which includes the scaling of the matter field
perturbations by the scale factor of the geometry, is performed in order to
arrive at a convenient formulation of the system. We then study the
quantization of these perturbations in the classical background determined by
the homogeneous variables. Based on previous work, we introduce a Fock
representation for the perturbations in which: (a) the complex structure is
invariant under the isometries of the spatial sections and (b) the field
dynamics is implemented as a unitary operator. These two properties select not
only a unique unitary equivalence class of representations, but also a
preferred field description, picking up a canonical pair of field variables
among all those that can be obtained by means of a time-dependent scaling of
the matter field (completed into a linear canonical transformation). Finally,
we present an equivalent quantization constructed in terms of gauge-invariant
quantities. We prove that this quantization can be attained by a mode-by-mode
time-dependent linear canonical transformation which admits a unitary
implementation, so that it is also uniquely determined.Comment: 19 pages, minor impovementes included, typos correcte
Genes encoding α-amylase inhibitors are located in the short arms of chromosomes 3B, 3D and 6D of wheat (Triticum aestivum L.)
Three -amylase inhibitors, designated Inh. I, II and III have been purified from the 70% ethanol extract of hexaploid wheat (Triticum aestivum L.) and characterized by amino acid analysis, N-terminal amino acid sequencing and enzyme inhibition tests. Inhibitors I and III have identical N-terminal sequences and inhibitory properties to those of the previously described 0.19/0.53 group of dimeric inhibitors. Inhibitor II has an N-terminal sequence which is identical to that of the previously described 0.28 monomeric inhibitor, but differs from it in that in addition to being active against -amylase from Tenebrio molitor, it is also active against mammalian salivary and pancreatic -amylases. Compensating nulli-tetrasomic and ditelosomic lines of wheat cv. Chinese Spring have been analysed by two-dimensional electrophoresis, under conditions in which there is no overlap of the inhibitors with other proteins, and the chromosomal locations of the genes encoding these inhibitors have been established: genes for Inh. I and Inh. III are in the short arms of chromosomes 3B and 3D, respectively, and that for Inh. II in the short arm of chromosome 6D
- …
