1,065 research outputs found

    Coupling of Josephson flux-flow oscillators to an external RC load

    Full text link
    We investigate by numerical simulations the behavior of the power dissipated in a resistive load capacitively coupled to a Josephson flux flow oscillator and compare the results to those obtained for a d.c. coupled purely resistive load. Assuming realistic values for the parameters R and C, both in the high- and in the low-Tc case the power is large enough to allow the operation of such a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4 PostScript figures. To appear in Supercond. Sci. Techno

    Triggering the Formation of Halo Globular Clusters with Galaxy Outflows

    Full text link
    We investigate the interactions of high-redshift galaxy outflows with low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While atomic cooling allows star formation in larger primordial objects, such "minihalos" are generally unable to form stars by themselves. However, the large population of high-redshift starburst galaxies may have induced widespread star formation in these objects, via shocks that caused intense cooling both through nonequilibrium H2 formation and metal-line emission. Using a simple analytic model, we show that the resulting star clusters naturally reproduce three key features of the observed population of halo globular clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the momentum imparted in such interactions is sufficient to strip the gas from its associated dark matter halo, explaining why GCs do not reside in dark matter potential wells. Finally, the mixing of ejected metals into the primordial gas is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a given GC, while at the same time allowing for a large spread in metallicity between different clusters. To study this possibility in detail, we use a simple 1D numerical model of turbulence transport to simulate mixing in cloud-outflow interactions. We find that as the shock shears across the side of the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched material into > 20% of the cloud. Such estimates ignore the likely presence of large-scale vortices, however, which would further enhance turbulence generation. Thus quantitative mixing predictions must await more detailed numerical studies.Comment: 21 pages, 11 figures, Apj in pres

    Particularities of the bucco-pharyngeal apparatus in <i>Zenarchopterus kampeni</i> (Pisces: Hemiramphida) and their probable significance in feeding

    Get PDF
    The present study shows several new anatomical particularities of the buccal and pharyngeal parts of the halfbeak Zenarchopterus kampeni. The upper buccal jaw consists of premaxillaries and maxillaries tightly joined by ligaments. A 10° lowering of the mandible leads to a 30° elevation of the upper jaw. The adductor mandibulae is reduced to bundles A²and A omega. As in the Labridae, the lower pharyngeal jaw articulates with the scapular girdle. The upper pharyngeal jaw consists of distinct second pharyngobranchials followed by the third pharyngobranchials fused into a powerful posterior component. This part fits into and slides along a longitudinal ventral gutter of the neuroranium, thanks not only to the dorsal retractor muscles but also to specific retractors of the second pharyngobranchials. The power and dentition of the pharyngeal parts contrasts with the fragility of the buccal elements

    Globular cluster systems II: On the formation of old globular clusters and their sites of formation

    Get PDF
    We studied the metal-poor globular cluster (GC) populations of a large variety of galaxies (47 galaxies spanning about 10mag in absolute brightness) and compared their mean [Fe/H] with the properties of the host galaxies. The mean [Fe/H] of the systems lie in the -1.65<[Fe/H]<-1.20 range (74% of the population). Using only GC systems with more than 6 objects detected, 85% of the population lie within -1.65<[Fe/H]<-1.20. The relation between the mean [Fe/H] of the metal-poor GC systems and the Mv of their host galaxies presents a very low slope which includes zero. An analysis of the correlation of the mean [Fe/H] with other galaxy properties also leads to the conclusion that no strong correlation exists. The lack of correlation suggests a formation of all metal-poor GC in similar gas fragments. A weak correlation might exist between mean [Fe/H] of the metal-poor GC and host galaxy metallicity. This would imply that some fragments in which metal-poor GC formed were already embedded in the larger dark matter halo of the final galaxy (as oppose to being independent satellites that were accreted later). Our result suggests a homogeneous formation of metal-poor GC in all galaxies, in typical fragments of masses around 10^9-10^10 solar masses with very similar metallicities, compatible with hierarchical formation scenarios for galaxies. We compared the mean [Fe/H] of the metal-poor GC populations with the typical metallicities of high-z objects. If we add the constraint that GC need a high column density of gas to form, DLAs are the most likely sites for the formation of metal-poor GC populations.Comment: accepted for publication in AJ, scheduled for the May 2001 issu

    Shape changing and accelerating solitons in integrable variable mass sine-Gordon model

    Get PDF
    Sine-Gordon model with variable mass (VMSG) appears in many physical systems, ranging from the current through nonuniform Josephson junction to DNA-promoter dynamics. Such models are usually nonintegrable with solutions found numerically or peturbatively. We construct a class of VMSG models, integrable both at classical and quantum level with exact soliton solutions, which can accelerate, change their shape, width and amplitude simulating realistic inhomogeneous systems at certain limits.Comment: 6 pages, 4 figures, revised with more physical input, to be published in Phys. Rev. Let

    Star cluster formation and star formation: the role of environment and star-formation efficiencies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe

    Systematic uncertainties in the analysis of star cluster parameters based on broad-band imaging observations

    Get PDF
    High-resolution Hubble Space Telescope (HST) imaging observations of star cluster systems provide a very interesting and useful alternative to spectroscopic studies for stellar population analyses with 8-m class telescopes. Here, we assess the systematic uncertainties in (young) cluster age, mass and (to a lesser extent) extinction and metallicity determinations, based on broad-band imaging observations with the HST. Our aim here is to intercompare the results obtained using a variety of commonly used modelling techniques, specifically with respect to our own extensively tested multidimensional approach. Any significant differences among the resulting parameters are due to the details of the various, independently developed, modelling techniques used, rather than to the stellar population models themselves. Despite the model uncertainties and the selection effects inherent to most methods used, we find that the peaks in the relative age and mass distributions of a given young (≲109 yr) cluster system can be derived relatively robustly and consistently, to accuracies of σt≡Δ〈log(age/yr)〉≤ 0.35 and σM≡Δ〈log(Mcl/M⊙)〉≤ 0.14, respectively, assuming Gaussian distributions in cluster ages and masses for reasons of simplicity. The peaks in the relative mass distributions can be obtained with a higher degree of confidence than those in the relative age distributions, as exemplified by the smaller spread among the peak values of the mass distributions derived. This implies that mass determinations are mostly insensitive to the approach adopted. We reiterate that as extensive a wavelength coverage as possible is required to obtain robust and internally consistent age and mass estimates for the individual objects, with reasonable uncertainties. Finally, we conclude that the actual filter systems used for the observations should be used for constructing model colours, instead of using conversion equations, to achieve more accurate derivations of ages and masse

    Exoplanet phase curves: observations and theory

    Full text link
    Phase curves are the best technique to probe the three dimensional structure of exoplanets' atmospheres. In this chapter we first review current exoplanets phase curve observations and the particular challenges they face. We then describe the different physical mechanisms shaping the atmospheric phase curves of highly irradiated tidally locked exoplanets. Finally, we discuss the potential for future missions to further advance our understanding of these new worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been updated with new values for WASP-103b and WASP-18b. Contains a table sumarizing phase curve observation

    Transit spectrophotometry of the exoplanet HD189733b. II. New Spitzer observations at 3.6 microns

    Get PDF
    We present a new primary transit observation of the hot-jupiter HD189733b, obtained at 3.6 microns with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope. Previous measurements at 3.6 microns suffered from strong systematics and conclusions could hardly be obtained with confidence on the water detection by comparison of the 3.6 and 5.8 microns observations. We use a high S/N Spitzer photometric transit light curve to improve the precision of the near infrared radius of the planet at 3.6 microns. The observation has been performed using high-cadence time series integrated in the subarray mode. We are able to derive accurate system parameters, including planet-to-star radius ratio, impact parameter, scale of the system, and central time of the transit from the fits of the transit light curve. We compare the results with transmission spectroscopic models and with results from previous observations at the same wavelength. We obtained the following system parameters: R_p/R_\star=0.15566+0.00011-0.00024, b=0.661+0.0053-0.0050, and a/R_\star=8.925+0.0490-0.0523 at 3.6 microns. These measurements are three times more accurate than previous studies at this wavelength because they benefit from greater observational efficiency and less statistic and systematic errors. Nonetheless, we find that the radius ratio has to be corrected for stellar activity and present a method to do so using ground-based long-duration photometric follow-up in the V-band. The resulting planet-to-star radius ratio corrected for the stellar variability is in agreement with the previous measurement obtained in the same bandpass (Desert et al. 2009). We also discuss that water vapour could not be evidenced by comparison of the planetary radius measured at 3.6 and 5.8 microns, because the radius measured at 3.6 microns is affected by absorption by other species, possibly Rayleigh scattering by haze.Comment: 19 pages, 13 figures, accepted for publication in Astronomy & Astrophysic
    corecore