1,943 research outputs found
Design and Performance of a Circuit for the Analogue Optical Transmission in the CMS Inner Tracker
Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera
In October 2013, the Italian Ministry approved the funding of a Research &
Development (R&D) study, within the "Progetto Premiale TElescopi CHErenkov made
in Italy (TECHE)", devoted to the development of a demonstrator for a camera
for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists
of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on
an electronics designed for signal sampling. Preliminary tests on a matrix of
sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on
electronic prototypes produced by SITAEL S.p.A. will be presented. In
particular, we used different designs of the electronics in order to optimize
the output signals in terms of tail cancellation. This is crucial for
applications where a high background is expected, as for the CTA experiment.Comment: 5 pages, 6 figures; Proceedings of the 10th Workshop on Science with
the New Generation of High-Energy Gamma-ray experiments (SciNeGHE) -
PoS(Scineghe2014)00
Multimodal approach for emotion recognition based on simulated flight experiments
The present work tries to fill part of the gap regarding the pilots' emotions and their bio-reactions during some flight procedures such as, takeoff, climbing, cruising, descent, initial approach, final approach and landing. A sensing architecture and a set of experiments were developed, associating it to several simulated flights ( N f l i g h t s = 13 ) using the Microsoft Flight Simulator Steam Edition (FSX-SE). The approach was carried out with eight beginner users on the flight simulator ( N p i l o t s = 8 ). It is shown that it is possible to recognize emotions from different pilots in flight, combining their present and previous emotions. The cardiac system based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalography (EEG), were used to extract emotions, as well as the intensities of emotions detected from the pilot face. We also considered five main emotions: happy, sad, angry, surprise and scared. The emotion recognition is based on Artificial Neural Networks and Deep Learning techniques. The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were the main methods used to measure the quality of the regression output models. The tests of the produced output models showed that the lowest recognition errors were reached when all data were considered or when the GSR datasets were omitted from the model training. It also showed that the emotion surprised was the easiest to recognize, having a mean RMSE of 0.13 and mean MAE of 0.01; while the emotion sad was the hardest to recognize, having a mean RMSE of 0.82 and mean MAE of 0.08. When we considered only the higher emotion intensities by time, the most matches accuracies were between 55% and 100%.info:eu-repo/semantics/publishedVersio
β-band analysis from simulated flight experiments
Several safety-related improvements are applied every year to try to minimize the total number of civil aviation accidents. Fortunately, these improvements work well, reducing the number of accident occurrences. However, while the number of accidents due to mechanical failures has decreased, the number of accidents due to human errors seems to grow. On that basis, this work presents a contribution regarding the brain’s β-band activities for different levels of volunteers’ expertise on flight simulator, i.e., experienced, mid-level and beginner, in which they acted as pilots in command during several simulated flights. Spectrogram analysis and statistical measurements of each volunteer’s brain’s β-band were carried out. These were based on seven flight tasks: takeoff, climb, cruise flight, descent, approach, final approach and landing. The results of the proposed experiment showed that the takeoff, approach and landing corresponded to the highest brain activities, i.e., close to 37.06–67.33% more than the brain activity of the other flight tasks: when some accidents were about to occur, the intensities of the brain activity were similar to those of the final approach task. When the volunteers’ expertise and confidence on flight simulation were considered, it was shown that the highest brain magnitudes and oscillations observed of more experienced and confident volunteers were on average close to 68.44% less, compared to less experienced and less confident volunteers. Moreover, more experienced and confident volunteers in general presented different patterns of brain activities compared to volunteers with less expertise or less familiarity with fight simulations and/or electronic games.info:eu-repo/semantics/publishedVersio
IoT-based systems for soil nutrients assessment in horticulture
Soil nutrients assessment has great importance in horticulture. Implementation of an information system for horticulture faces many challenges: (i) great spatial variability within farms (e.g., hilly topography); (ii) different soil properties (e.g., different water holding capacity, different content in sand, sit, clay, and soil organic matter, different pH, and different permeability) for different cultivated plants; (iii) different soil nutrient uptake by different cultivated plants; (iv) small size of monoculture; and (v) great variety of farm components, agroecological zone, and socio-economic factors. Advances in information and communication technologies enable creation of low cost, efficient information systems that would improve resources management and increase productivity and sustainability of horticultural farms. We present an information system based on different sensing capability, Internet of Things, and mobile application for horticultural farms. An overview on different techniques and technologies for soil fertility evaluation is also presented. The results obtained in a botanical garden that simulates the diversity of environment and plant diversity of a horticultural farm are discussed considering the challenges identified in the literature and field research. The study provides a theoretical basis and technical support for the development of technologies that enable horticultural farmers to improve resources management.info:eu-repo/semantics/publishedVersio
Effects of Vagal Stimulation on Induction and Termination of Atrial Fibrillation in an in Vivo Rabbit Heart Model
INTRODUCTION: Vagal activity is thought to influence atrial electrophysiological properties and play a role in the initiation and maintenance of atrial fibrillation (AF). In this study, we assessed the effects of acute vagal stimulation (vagus_stim) on atrial conduction times, atrial and pulmonary vein (PV) refractoriness, and vulnerability to induction of AF in the rabbit heart with intact autonomic innervation.
METHODS: An open-chest epicardial approach was performed in 11 rabbits (New Zealand; 3.9-5.0 kg), anesthetized and artificially ventilated after neuromuscular blockade. A 3-lead ECG was obtained. Atrial electrograms were recorded along the atria, from right to left (four monopolar electrodes), together with a circular electrode adapted for proximal left PV assessment. Acute vagus nerve stimulation was obtained with bipolar electrodes (20 Hz). Epicardial activation was recorded in sinus rhythm, and the conduction time from right (RA) to left atrium (LA), and from RA to PVs, was measured in basal conditions and during vagus_stim. The atrial effective refractory period (ERP) and dispersion of refractoriness (Disp_A) were analyzed. Vulnerability to AF induction was assessed at the right (RAA) and left (LAA) atrial appendages and the PVs. Atrial stimulation (50 Hz) was performed alone or combined with vagus_stim. Heart rate and blood pressure were monitored.
RESULTS: In basal conditions, there was a significant delay in conduction from RA to PVs, not influenced by vagus_stim, and the PV ERPs were shorter than those measured in LA and LAA, but without significant differences compared to RA and RAA. During vagus_stim, conduction times between RA and LA increased from 16+8 ms to 27+6 ms (p 10 s in 45.4% of rabbits during vagus_stim, and ceased after vagus_stim in 4 out of these 5 cases. In 3 animals, PV tachycardia, with fibrillatory conduction, induced with 50 Hz PV pacing during vagus_stim.
CONCLUSIONS: Vagus_stim reduces interatrial conduction velocity and significantly shortens atrial ERP, contributing to the induction and duration of AF episodes in the in vivo rabbit heart. This model may be useful for the assessment of autonomic influence on the pathophysiology of AF
Transducer electronic data sheets: anywhere, anytime, anyway
Transducer electronic data sheets (TEDS) are a key element of smart transducers because they support core features such as plug and play, self-calibration, and self-diagnostics. The ISO/IEC/IEEE 21451-4 standard defines templates to describe the most common types of transducers and suggests the use of one-wire memories to store the corresponding data. In this paper we explore new ways to store and access TEDS tables, including near field communication (NFC) tags and QR codes. We also present a mobile TEDS parser, compatible with Android, that is capable of reading TEDS data from all supported mediums (one-wire memories, NFC tags, and QR codes) and decoding them as human-readable text. The idea is to make TEDS available in the easiest way possible. We also underline the need to extend the 21451-4 standard by adding support for frequency-time sensors. A new TEDS template is proposed, and filling examples are presented. The main novelties of the paper are (i) the proposal of new ways to store 21451-4 TEDS tables using NFC tags and QR codes; (ii) the release of new tools to access TEDS tables including a mobile parser; and (iii) the definition of a new TEDS template for frequency-time sensors.info:eu-repo/semantics/publishedVersio
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
A multi-sensing physical therapy assessment for children with cerebral palsy
This work presents the development of a multi-sensing interface called Palsy Thera Sense, to provide information data obtained during physical therapy of the children with cerebral palsy. It allows the monitoring the children's motor skills, and provide metrics that can be later used for proper and effective training. This interface is based on distributed force measurement system characterized by two different load cells. The signals from signals from the load cells distributed on the level of a force platform and at the level of child's body support ropes that are tied on the cerebral palsy spider cage are acquired and wireless transmitted to a client computation platform. Thus different tests can be carried out including, center of forces measurements and gait simulations. These tests can be study of children balance during different activities such as serious game playing for upper limb rehabilitation. The interface shown to be an important tool that provide support to cerebral palsy rehabilitation process, and for objective evaluation of the patients during the rehabilitation period. Several experimental results are included in the paper highlighting the capabilities of the designed and implemented multi-sensing system.info:eu-repo/semantics/acceptedVersio
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
- …
