24,981 research outputs found

    Tracer techniques for urine volume determination and urine collection and sampling back-up system

    Get PDF
    The feasibility, functionality, and overall accuracy of the use of lithium were investigated as a chemical tracer in urine for providing a means of indirect determination of total urine volume by the atomic absorption spectrophotometry method. Experiments were conducted to investigate the parameters of instrumentation, tracer concentration, mixing times, and methods for incorporating the tracer material in the urine collection bag, and to refine and optimize the urine tracer technique to comply with the Skylab scheme and operational parameters of + or - 2% of volume error and + or - 1% accuracy of amount of tracer added to each container. In addition, a back-up method for urine collection and sampling system was developed and evaluated. This back-up method incorporates the tracer technique for volume determination in event of failure of the primary urine collection and preservation system. One chemical preservative was selected and evaluated as a contingency chemical preservative for the storage of urine in event of failure of the urine cooling system

    Quasi-chemical approximation for polyatomic mixtures

    Full text link
    The statistical thermodynamics of binary mixtures of polyatomic species was developed on a generalization in the spirit of the lattice-gas model and the quasi-chemical approximation (QCA). The new theoretical framework is obtained by combining: (i) the exact analytical expression for the partition function of non-interacting mixtures of linear kk-mers and ll-mers (species occupying kk sites and ll sites, respectively) adsorbed in one dimension, and its extension to higher dimensions; and (ii) a generalization of the classical QCA for multicomponent adsorbates and multisite-occupancy adsorption. The process is analyzed through the partial adsorption isotherms corresponding to both species of the mixture. Comparisons with analytical data from Bragg-Williams approximation (BWA) and Monte Carlo simulations are performed in order to test the validity of the theoretical model. Even though a good fitting is obtained from BWA, it is found that QCA provides a more accurate description of the phenomenon of adsorption of interacting polyatomic mixtures.Comment: 27 pages, 8 figure

    Low temperature field-effect in crystalline organic material

    Full text link
    Molecular organic materials offer the promise of novel electronic devices but also present challenges for understanding charge transport in narrow band systems. Low temperature studies elucidate fundamental transport processes. We report the lowest temperature field effect transport results on a crystalline oligomeric organic material, rubrene. We find field effect switching with on-off ratio up to 10^7 at temperatures down to 10 K. Gated transport shows a factor of ~10 suppression of the thermal activation energy in 10-50 K range and nearly temperature independent resistivity below 10 K.Comment: 5 pages, 4 figure
    corecore