741 research outputs found
A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)
A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways
Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel
This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations
On the existence of a finite-temperature transition in the two-dimensional gauge glass
Results from Monte Carlo simulations of the two-dimensional gauge glass
supporting a zero-temperature transition are presented. A finite-size scaling
analysis of the correlation length shows that the system does not exhibit
spin-glass order at finite temperatures. These results are compared to earlier
claims of a finite-temperature transition.Comment: 4 pages, 2 figure
Temperature behavior of the magnon modes of the square lattice antiferromagnet
A spin-wave theory of short-range order in the square lattice Heisenberg
antiferromagnet is formulated. With growing temperature from T=0 a gapless mode
is shown to arise simultaneously with opening a gap in the conventional
spin-wave mode. The spectral intensity is redistributed from the latter mode to
the former. For low temperatures the theory reproduces results of the modified
spin-wave theory by M.Takahashi, J.E.Hirsch et al. and without fitting
parameters gives values of observables in good agreement with Monte Carlo
results in the temperature range 0 <= T < 0.8J where J is the exchange
constant.Comment: 12 pages, 2 figure
Two spin liquid phases in the spatially anisotropic triangular Heisenberg model
The quantum spin-1/2 antiferromagnetic Heisenberg model on a two dimensional
triangular lattice geometry with spatial anisotropy is relevant to describe
materials like and organic compounds like
{-(ET)Cu(CN)}. The strength of the spatial anisotropy can
increase quantum fluctuations and can destabilize the magnetically ordered
state leading to non conventional spin liquid phases. In order to understand
these intriguing phenomena, quantum Monte Carlo methods are used to study this
model system as a function of the anisotropic strength, represented by the
ratio between the intra-chain nearest neighbor coupling and the
inter-chain one . We have found evidence of two spin liquid regions. The
first one is stable for small values of the coupling J'/J \alt 0.65, and
appears gapless and fractionalized, whereas the second one is a more
conventional spin liquid with a small spin gap and is energetically favored in
the region 0.65\alt J'/J \alt 0.8. We have also shown that in both spin
liquid phases there is no evidence of broken translation symmetry with dimer or
spin-Peirls order or any broken spatial reflection symmetry of the lattice. The
various phases are in good agreement with the experimental findings, thus
supporting the existence of spin liquid phases in two dimensional quantum
spin-1/2 systems.Comment: 35 pages, 24 figures, 3 table
Phase Transition in the Two-Dimensional Gauge Glass
The two-dimensional XY gauge glass, which describes disordered
superconducting grains in strong magnetic fields, is investigated, with regard
to the possibility of a glass transition. We compute the glass susceptibility
and the correlation function of the system via extensive numerical simulations
and perform the finite-size scaling analysis. This gives strong evidence for a
finite-temperature transition, which is expected to be of a novel type.Comment: 5pages, 3 figures, revtex, to appear in Phys. Rev.
One-loop approximation for the Heisenberg antiferromagnet
We use the diagram technique for spin operators to calculate Green's
functions and observables of the spin-1/2 quantum Heisenberg antiferromagnet on
a square lattice. The first corrections to the self-energy and interaction are
taken into account in the chain diagrams. The approximation reproduces main
results of Takahashi's modified spin-wave theory [Phys. Rev. B 40, 2494 (1989)]
and is applicable in a wider temperature range. The energy per spin calculated
in this approximation is in good agreement with the Monte Carlo and
small-cluster exact-diagonalization calculations in the range 0 <= T < 1.2J
where J is the exchange constant. For the static uniform susceptibility the
agreement is good for T < 0.6J and becomes somewhat worse for higher
temperatures. Nevertheless the approximation is able to reproduce the maximum
in the temperature dependence of the susceptibility near T = 0.9J.Comment: 15 pages, 6 ps figure
Excitation spectrum of the homogeneous spin liquid
We discuss the excitation spectrum of a disordered, isotropic and
translationally invariant spin state in the 2D Heisenberg antiferromagnet. The
starting point is the nearest-neighbor RVB state which plays the role of the
vacuum of the theory, in a similar sense as the Neel state is the vacuum for
antiferromagnetic spin wave theory. We discuss the elementary excitations of
this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1
excited dimers which must be modeled by bond Bosons. We derive an effective
Hamiltonian describing the excited dimers which is formally analogous to spin
wave theory. Condensation of the bond-Bosons at zero temperature into the state
with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering.
The latter is a key ingredient for a microscopic interpretation of Zhang's
SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of
figures (or the entire manuscript) can be obtained by e-mail request to:
[email protected]
Modified Spin Wave Thoery of the Bilayer Square Lattice Frustrated Quantum Heisenberg Antiferromagnet
The ground state of the square lattice bilayer quantum antiferromagnet with
nearest and next-nearest neighbour intralayer interaction is studied by means
of the modified spin wave method. For weak interlayer coupling, the ground
state is found to be always magnetically ordered while the quantum disordered
phase appear for large enough interlayer coupling. The properties of the
disordered phase vary according to the strength of the frustration. In the
regime of weak frustration, the disordered ground state is an almost
uncorrelated assembly of interlayer dimers, while in the strongly frustrated
regime the quantum spin liquid phase which has considerable N\'eel type short
range order appears. The behavior of the sublattice magnetization and spin-spin
correlation length in each phase is discussed.Comment: 15 pages, revtex, figures upon reques
Application of a minimum cost flow algorithm to the three-dimensional gauge glass model with screening
We study the three-dimensional gauge glass model in the limit of strong
screening by using a minimum cost flow algorithm, enabling us to obtain EXACT
ground states for systems of linear size L<=48. By calculating the domain-wall
energy, we obtain the stiffness exponent theta = -0.95+/-0.03, indicating the
absence of a finite temperature phase transition, and the thermal exponent
nu=1.05+/-0.03. We discuss the sensitivity of the ground state with respect to
small perturbations of the disorder and determine the overlap length, which is
characterized by the chaos exponent zeta=3.9+/-0.2, implying strong chaos.Comment: 4 pages RevTeX, 2 eps-figures include
- …
