2,168 research outputs found
Efficient operation of a high-power X-band gyroklystron
Experimental studies of amplification in a two-cavity X-band gyroklystron are reported. The system utilizes a thermionic magnetron injection gun at voltages up to 440 kV and currents up to 190 A in 1-μs pulses. Optimum performance is achieved by tapering the magnetic-field profile. Peak powers of 20 MW in the TE01 mode at 9.87 GHz are measured with calibrated crystals and with methanol calorimetry. Resultant efficiencies are in excess of 31% and large-signal gains surpass 26 dB. The experimental results are in good agreement with simulated results from a partially self-consistent, nonlinear, steady-state code
Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications
Phase mixing of chaotic orbits exponentially distributes these orbits through
their accessible phase space. This phenomenon, commonly called ``chaotic
mixing'', stands in marked contrast to phase mixing of regular orbits which
proceeds as a power law in time. It is operationally irreversible; hence, its
associated e-folding time scale sets a condition on any process envisioned for
emittance compensation. A key question is whether beams can support chaotic
orbits, and if so, under what conditions? We numerically investigate the
parameter space of three-dimensional thermal-equilibrium beams with space
charge, confined by linear external focusing forces, to determine whether the
associated potentials support chaotic orbits. We find that a large subset of
the parameter space does support chaos and, in turn, chaotic mixing. Details
and implications are enumerated.Comment: 39 pages, including 14 figure
High-power operation of a K-band second harmonic gyroklystron
Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared
Production of Enhanced Beam Halos via Collective Modes and Colored Noise
We investigate how collective modes and colored noise conspire to produce a
beam halo with much larger amplitude than could be generated by either
phenomenon separately. The collective modes are lowest-order radial eigenmodes
calculated self-consistently for a configuration corresponding to a
direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij
equilibrium. The colored noise arises from unavoidable machine errors and
influences the internal space-charge force. Its presence quickly launches
statistically rare particles to ever-growing amplitudes by continually kicking
them back into phase with the collective-mode oscillations. The halo amplitude
is essentially the same for purely radial orbits as for orbits that are
initially purely azimuthal; orbital angular momentum has no statistically
significant impact. Factors that do have an impact include the amplitudes of
the collective modes and the strength and autocorrelation time of the colored
noise. The underlying dynamics ensues because the noise breaks the
Kolmogorov-Arnol'd-Moser tori that otherwise would confine the beam. These tori
are fragile; even very weak noise will eventually break them, though the time
scale for their disintegration depends on the noise strength. Both collective
modes and noise are therefore centrally important to the dynamics of halo
formation in real beams.Comment: For full resolution pictures please go to
http://www.nicadd.niu.edu/research/beams
FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery
The goal of the FOREVER project is to develop a service for Fault/intrusiOn REmoVal through Evolution & Recovery. In order to achieve this goal, our work addresses three main tasks: the definition of the FOREVER service architecture; the analysis of how diversity techniques can improve resilience; and the evaluation of the FOREVER service. The FOREVER service is an important contribution to intrustion-tolerant replication middleware and significantly enhances the resilience
Bosonization of current-current interactions
We discuss a generalization of the conventional bosonization procedure to the
case of current-current interactions which get their natural representation in
terms of current instead of fermion number density operators. A consistent
bosonization procedure requires a geometrical quantization of the hamiltonian
action of on its coadjoint orbits. An integrable example of a
nontrivial realization of this symmetry is presented by the Calogero-Sutherland
model. For an illustrative nonintegrable example we consider transverse gauge
interactions and calculate the fermion Green function.Comment: 15 pages, TeX, C Version 3.0, Princeton preprin
Chaos and the continuum limit in nonneutral plasmas and charged particle beams
This paper examines discreteness effects in nearly collisionless N-body
systems of charged particles interacting via an unscreened r^-2 force, allowing
for bulk potentials admitting both regular and chaotic orbits. Both for
ensembles and individual orbits, as N increases there is a smooth convergence
towards a continuum limit. Discreteness effects are well modeled by Gaussian
white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb
logarithm and t_D the dynamical time scale. Discreteness effects accelerate
emittance growth for initially localised clumps. However, even allowing for
discreteness effects one can distinguish between orbits which, in the continuum
limit, feel a regular potential, so that emittance grows as a power law in
time, and chaotic orbits, where emittance grows exponentially. For sufficiently
large N, one can distinguish two different `kinds' of chaos. Short range
microchaos, associated with close encounters between charges, is a generic
feature, yielding large positive Lyapunov exponents X_N which do not decrease
with increasing N even if the bulk potential is integrable. Alternatively,
there is the possibility of larger scale macrochaos, characterised by smaller
Lyapunov exponents X_S, which is present only if the bulk potential is chaotic.
Conventional computations of Lyapunov exponents probe X_N, leading to the
oxymoronic conclusion that N-body orbits which look nearly regular and have
sharply peaked Fourier spectra are `very chaotic.' However, the `range' of the
microchaos, set by the typical interparticle spacing, decreases as N increases,
so that, for large N, this microchaos, albeit very strong, is largely
irrelevant macroscopically. A more careful numerical analysis allows one to
estimate both X_N and X_S.Comment: 13 pages plus 17 figure
Erziehung und sozialer Wandel - Brennpunkte sozialpädagogischer Forschung, Theoriebildung und Praxis. Eine Einführung in die Thematik des Beihefts
Verallgemeinernd wird im Beitrag festgestellt: "Es geht zunächst um die Vergegenwärtigung der Wandlungen und Veränderungen in den sozialen Problemlagen und Lebensverhältnissen der Adressaten der Sozialpolitik, wie sie sich im Zusammenhang der dramatischen Veränderungen auf der gesellschaftlichen Ebene in der zweiten Hälfte der neunziger Jahre darstellen; deswegen ist von den Erziehungsverhältnissen im sozialen Wandel die Rede... Es geht um die Frage, wie Erziehungs- und Bildungsverhältnisse im Zeichen und im Kontext gesellschaftlicher Wandlungsprozesse sich verändern und welche Problemlagen daraus resultieren." (DIPF/Sch.
From START to FINISH : the influence of osmotic stress on the cell cycle
Peer reviewedPublisher PD
Collaboration scripts - a conceptual analysis
This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learners’ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts
- …
